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ABSTRACT 

 
Lightning protection and insulation coordination of transmission lines and substations require an accurate 

knowledge of the magnitudes and waveforms of lightning overvoltage. To simulate the lightning 

overvoltage precisely near the substation, this study has shown how to consider the lightning impulse 

corona for distortion effect of this overvoltage. 

 
Attenuation and deformation effects of lightning impulse corona along transmission lines are evaluated by 

the simulation results. This paper describes the substation equipment modeling in the software 

Electromagnetic Transients Program–Alternative Transients Program EMTP.  Corona effect is incorporate 

in order to estimate the attenuation and deformation of overvoltage’s travelling waves on transmission 

lines near substations. Variations of lightning stroke current magnitudes, protection distances, and the 

impact points are obvious due to the applied dynamic corona model. Several elements of substation 

equipment are modeled in ATP/EMTP using MODELS language. The Simulation results show that the 

amplitude and voltage travelling wave-fronts attenuated remarkably. Deformation of the wave shapes 

mainly occurs when the impulse voltage exceeds the corona inception voltage. 
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1.1 INTRODUCTION 
 

Very Fast Transient (VFT) in power substation can be divided into internal and external transients 
[1]. 
 
The theoretical methods for overvoltage analysis are developed, in the domain of lightning surges 
for reason of difficult measure the transient surge occurring in real HV and EHV power systems, 
so mathematical models of physical phenomena as lightning strike, corona discharge and 
flashover , using computers and techniques are applied. 
 
Several simulation models of the power insulation have been proposed in literature [2-8], and it 
contain tower segments, tower grounding system, Flashover of insulator strings, Insulators, 
transformers, transmission lines, lightning strike [9-10] and corona discharge [11-18]. 
Presented analysis is important for insulation coordination of substations since the computed peak 
overvoltages are used for the evaluation of the substation outage rate as well as for the selection 
of the necessary protection measures. 



Advances in Engineering: an International Journal (ADEIJ), Vol. 1, No.1, September 2016 

56 
 

In this paper lightning stroke is applied at the grounding wire on the overhead line. Its impact on 
underground cables was studied. Transient program Electromagnetic Transients Program (ATP-
EMTP) is used to create a model of the power system for simulation of lightning stroke at the 
grounding wire on the overhead line and its impact on underground cables and surge arresters. 
The results of the simulation are briefly presented and discussed in the paper.  
   
This paper describes a power substation and analyses the variations of VFTO magnitudes at 
different points in 420 kV substation using ATP/EMTP as a platform for the simulation of 
transients phenomenon.  
 
And the effect of different protection elements is treated in this study and the effect of corona 
discharge at the transmission lines is introduced by a dynamic model of corona using the type-94 
element of ATP/EMTP. 
 

2. POWER SYSTEM DESCRIPTION 
 

The substation model in this study is developed using the Electromagnetic Transients Program–
Alternative Transients Program (EMTP-ATP) software. Following components are used in the 
simulation cases: 

 

2.1   High-Voltage Overhead Line And Cables Modeling 
 

The overhead Transmission line is simulated by J. Marti’s multi-conductor model. Input data 
consists of conductor’s geometric configuration, its diameters and geometry of bundles [19].  
Line parameters are calculated using LINE CONSTANTS routine of the EMTP, and the line 
Characteristics of J Marti TL are shown in Figure 1. 
 
The cable has 600 m length divided into ten equal sections and each section and is simulated in 
the same way as the line (Figure 2).The line and cable are simulated by dividing them into a 

number of equal sections. 
 

 
Figure 1. Characteristics of J Marti TL 
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2.2 Lightning Stroke 

 
Different models have been proposed in order to estimate the severity of voltages induced by 
indirect lightning return strokes [9, 10, 20] 
Lightning discharge is represented by a current source of positive polarity. The Heidler’s function 
is used to represent lightning current waveform [20]: 
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Where 
I0: lightning current peak, 
Tf = time constant determining current rise-time, the front duration in [sec].  
Tau: time constant determining current decay-time, the stroke duration in [sec]. 
n: current steepness factor, factor influencing the rate of rise of the function.  
 

 
Figure 2. Characteristics of LCC L 

 
In this paper values for Heidler’s function parameters are as follows: I0=30kA, Tf=1µs, 
Tau=50µs,   and n=2 as shown in Fig 3 and Fig 4 shows the lightning current waveform. 
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Figure 3. Lightning stroke model consisting of a current source and lightning 

 
Figure 4. Lightning current waveform used in this paper 

 

2.3  Implementation Of A Corona Model 
 

Corona is simulated by a non-linear shunt model of corona considering space charge, 
implemented at the moment when the corona inception voltage U0 is reached. Corona is modeled 
with the use of a dynamic capacitance [16, 21, 22] and is expressed as a function of voltage Cc= 
f(v) and its derivatives Cc = f(∂ v/∂ t), so the dynamic model takes into account the fact that the 
corona charge depends on the voltage and on its rate of change.  The value of this capacitor may 
be obtained from the Q-V curves.  
 
The  electric  field  E0  at  the  corona  electrode  is  restricted to  the  value  the empirical formula 
of Peek [23]. 
 
E0 is the  critical electric field on conductor surface in kV/Cm, when the corona will occur, 
became [23-24]: 
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m is the roughness factor (surface state of conductor) [24] , K0=0.301 and δ  is air relative 
density. 
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 is the atmospheric pressure  in kPa,   is the environment pressure. 

 is the atmospheric temperature in °C, and  is the environment temperature. 
Where: E0 is the corona inception field determined by Empirical formulas of Peek’s [23], 

which take place in the ionization zone around the stressed conductor. 
The corona inception voltage can be calculated by a modified Peek’s formula [25, 26]: 
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For a configuration above the ground, the inception corona voltage became [26]: 
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Where  and  are inner and outer radius of the coaxial cylindrical electrode respectively.  
is the corona inception voltage in kV. 
The Q-V diagram is calculated by the corona inception voltage and the charge bound on the 
conductor with following expressions [27], [21]: 
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Solution of the two equations above will give the positions of the corona shells, and this 
movement is computed iteratively by the Dichotomy numerical method. As a result of this model 
a computed Q-V curve compared with the experimental results available in the literature [11], is 
shown in Figure 5.  Reasonable agreement is obvious between them. We used the system of 

radius:  and applying a switching voltage (120 / 2200 µs) with 250 kV. 
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Figure 5. Q-V Curve of corona model 

 
From this figure, when the voltage is below the critical threshold, the space charge is zero, and 
the total charge takes the value corresponds to the geometrical capacitance of transmission line. 
After the appearance of corona, the space charge has a non-linear behavior and it increases with 
magnitude of applied voltage. Total charge becomes equal to the sum of the geometrical charge 
and the space charge, after the peak voltage value the total charge decreases and closed by 
geometric capacitance. 
 
In this study, corona model is implemented in ATP/EMTP with non-linear NORTON type-94 
block. Corona blocks are connected to nodes at the end of transmission line sections. Corona 
phenomenon is completely described by the user-written procedure in MODELS language. 
Interaction between main program and MODEL block is shown in Figure 6. 
 

             
Figure 6. EMTP Model of corona capacitance 

 

2.4  Surge Arrester And Transformer 
 

Surge arrester the model recommended by IEEE is composed of two nonlinear elements 
separated by a resistance-inductance network and is based on the V-I characteristic of lightning 
arrester as presented on Figure 7 [28]. 
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Parameters used for arrester model are: L0=0.6432µH, R0=321.6 Ω, L1=73.32µH, R1=209.04 Ω, 
C=0.03.109 nF 
 
In order to protect underground cable from lightning overvoltages surge arresters are installed at 
the places where overhead lines and cables are connected and across the transformer. Surge 
arrester is simulated by its voltage-current characteristics. The capacitive voltage transformer 
(CVT) was represented by a shunt capacitance. 

 

 
Figure 7. IEEE Model for lightning arrester 

 

2.5  Steel Of Towers And Insulators 
 

The layout of one typical tower is shown in Fig. 8.  Height of tower used in the paper is 38.2 m. 
The insulators connected in the tower, are presented by a dynamic model programmed with 
MODELS language of EMTP. 
 

                                   

 
Figure 8. EMTP representation of Single Circuit Pole Tower constructions 

 

3. SIMULATION RESULTS 
 

The overvoltage stress in a substation diagram (Figure 9) was simulated, regarding the effect of 
the following factors: 

- Distance of the lightning stroke from the substation; 
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- Position of lightning stroke 
- Influence of underground cable 
- Influence of surge arresters location. 
- Influence of Corona discharge. 

For the substation presented in Fig 9, the calculations are based on the assumption that the 
lightning stroke occurred in the overhead line 70, 370, and 970 m away from the substation. 
Cases are simulated as protected and unprotected HV equipment by the surge arresters, with 
corona and underground cable.  
 

 

Substation 

 

Ic 
Section 0 Section n 

L = 40.3km L = 300m L = 70m L = 300m 

U = 420kV 

 
Figure 9. 420 kV power line and substation 

 
The obtained results are simulated for four locations as: the input of power substation, the output 
of power substation, busbars of the first Transformer and at the interconnection of second 
capacitive transformer (Fig 10). In the following figures ZNO is the surge arrester, Cc is the 
corona model, C-G: earth wire, T1 and T2 are the voltage capacitive transformers, G-C: ground 
cable. 
 

3.1   Influence Of Surge Arrester 
 

At transformer T1 With and without surge arrester protection, for lightning strike simulated at 
distance of 70 m, the VFTO waves are with small difference (Fig. 10), but for the measure at 
transformer T2, the effect of ZNO it good remarked at crest values.   
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Figure 10. Effect of ZNO when lightning strike at power transformers T1 and T2 for 70m 
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Figure 11 presents ZNO protection effects in the system, where the lightning stroke is simulated 
at 370 m from the substation. The VFTO waveforms are measured at the both sides of substation. 
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Figure 11. Effect of ZNO when lightning strike at input and output for 370 m 

 

3.2  Lightning Stroke At Underground Cable, Tower And Conductor 

 
The Figure 12 illustrates the influence of site lightning strike: at earth wire and at line conductor 
(phase A), at 370m from the substation.  The VFTO waveforms are measured at the input and 
output of substation in absence of ZNO protection. This influence have greater overvoltage crest 
values, appear at phase A of line conductor. 
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Figure 12.  Effect of lightning strike at 370 m 

 

3.3  Influence Of Corona Disharge 
 

Figures 13 and 14 presents the influence of the protecting system of ZNO surge arrester and the 
corona model at the overvoltage waves, when the lightning strike is simulated 70 m from the 
substation at the tower (Figure 13) and at transmission line conductor (Figure 14), where the 
effect of corona is noticeable by the attenuation of overvoltage surge. When the lightning stroke 
position is near of power substation overvoltage attenuation is more significant. 
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Figure 13. VFTO with corona effect at input and output for 370m 
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Figure 14. VFTO waveforms, lightning stroke at tower for 70m 

 

Figure 15 shows level and waves shape of VFTO at the tower with lightning surge simulated 70 m  from 
substation at earth wire. From these waveforms, it is observed that peak magnitude of VFTO at 

power transformer is about 530 kV which is highest magnitude voltage. 
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Figure 15. VFTO waveforms, lightning stroke at earth wire for 70m 

 
Figures 16 and 17 show the effect of ZNO protection and corona phenomenon on the input and 
output of substation successively at distance of 370 m on the conductor. The attenuation of surge 
overvoltages is clear for the case when the corona model and the ZNO is applied in the system. 
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Figure 16. VFTO waveforms, lightning stroke at conductor for 370m 

 

0 10 20 30 40 50
-500

-250

0

250

500

750
 Output without ZNO & Cc

 output with ZNO without Cc

 With ZNO & Cc

V
o
lt
ag

e,
 k

 V

Time, µ s  
Figure 17. VFTO waveforms, lightning stroke at conductor for 970m 

 

3.4  Effect Of Lightning Surge Magnitude 
 

Figure 18 presents the influence of the lightning stroke magnitude with and without surge 
protection on overvoltage crest values.  
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Figure 18. VFTO waveforms for different current magnitude of lightning stroke 

 

3.5  Effect Of Distance Of Lightning Stroke From The Substation 
 

Figures 19 and 20 illustrate the influence of lightning stroke distance from the substation in the 
measuring point, obtained on the assumptions:  1) with surge arrester and corona model; 2) no 
surge arrester and no corona model (no surge protection) in the substation. 
 
In the case of larger distances of the lightning stroke, the overvoltage level decreases, and its crest 
values depend on surge protection and corona attenuation. 
 
When the lightning strikes at a greater distance, the overvoltage level decreases, and the crest 
values depend on the surge protection. The presented results were obtained for a lightning stroke 
at a power line at a distance of 70, 370, 670 and 970 m from the substation. 
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Figure 19. VFTO waveforms for effect of distance lightning strike with protection system 
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Figure 20. VFTO waveforms for effect of distance lightning strike without protection system 

 

3.6  Influence Of Cable Undergrounding (Lcc) 
 

Figures 21 and 21 illustrate the influence of the underground cable of 60m length divided into 10 
equal sections with lightning stroke applied at 370 m from the substation. The overvoltages are 
computed in the transformer. The obtained results shown that the crest values of overvoltages are 
reduced and the greater value is detected on the substation busbars and it reaches the value of 380 
kV. 
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Figure 21. VFTO waveforms for Influence of cable undergrounding at output 
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Figure 22. VFTO waveforms for Influence of cable undergrounding at output 

 
Fig.23 and 24 illustrates the influence of 600 m long underground cable divided on 10 equal 
sections. Distance of lightning stroke from the substation on overvoltages is at 370m and it 
calculated at the transformer T1 (Fig.23) ant at T2 (Fig.25) with ZNO protection and with/without 
corona model. It’s obvious from these figures that the crest value and the front steepness of 

overvoltages are reduced. 
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Figure 23. VFTO waveforms for Influence of cable undergrounding at T1 
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Figure 24. VFTO waveforms for Influence of cable undergrounding at T2 

 

4. CONCLUSION 
 

Substations are vital plants for collecting and distributing energy exposed to the lightning surges 
and impacted by danger and severe overvoltage wave effects. 
 
The present analysis is important for insulation coordination of substations since the computed 
peak overvoltages are used for the evaluation of the substation outage rate as well as for the 
selection of the necessary primary overvoltage protection devices (surge arresters). 
 
A model of an electric power line and substation developed in the Electromagnetic Transients 
Program–Alternative Transients Program is presented in this paper. Analysis of the results of 
lightning surges in the substation is presented. Variations of  VFTO magnitudes at different 
points in 420 kV power substation, and treating the effect of different protection elements along 
with the effect of corona discharge at the transmission lines introduced by a dynamic model of 
corona using the type-94 element of ATP/EMTP are demonstrated through various simulation 
cases. 
 
According to the simulation in this paper, there have attenuation and distortion and also have a 
certain delay under corona, it is favorable for overvoltage protection which can reduce the 
amplitude.  
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