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ABSTRACT 

In this paper, a novel robust adaptive type-2 fuzzy nonsingular sliding mode controller is proposed to 

stabilize the unstable periodic orbits of uncertain perturbed chaotic system with internal parameter 

uncertainties and external disturbances. This letter is assumed to have an affine form with unknown 

mathematical model, the type-2 fuzzy system is used to overcome this constraint. A global nonsingular 

terminal sliding mode manifold is proposed to eliminate the singularity problem associated with normal 

terminal sliding mode control. The proposed control law can drive system tracking error to converge to 

zero in finite time. The adaptive type-2 fuzzy system used to model the unknown dynamic of system is 

adjusted on-line by adaptation law deduced from the stability analysis in Lyapunov sense. Simulation 

results show the good tracking performances, and the efficiently of the proposed approach. 
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1. INTRODUCTION 

Chaos is a particular case of nonlinear dynamics that has some specific characteristics such as 

extraordinary sensitivity to initial conditions and system parameter variations. The study of chaos 

can be introduced in several applications as: medical field, fractal theory, electrical circuits and 

secure communication [1]. Nowadays, the scientific community has identified two problems in 

chaos control: suppression and synchronization. The chaos suppression problem can be defined as 

the stabilization of unstable periodic orbits (UPO's) of a chaotic attractor in equilibrium points or 

periodic orbits with period n embedded into the chaotic attractor [2]. Many nonlinear control 

techniques have been applied for chaos elimination and chaos synchronization such as linear and 

nonlinear control techniques based on feedback [3-6], variable structure control [7-8], nonlinear 

control [9-11], active control [12-14], backstepping design [15-17], fuzzy logic control [18-19], 

and adaptive control [20-21]. 

Unfortunately, most of the above approaches mentioned have not considered the uncertainties and 

unknown parameters of the chaotic system, internal and external disturbances. Then, a useful and 

effective control scheme to deal with uncertainties, time varying properties, nonlinearities and 

bounded externals disturbances is the sliding mode control (SMC). Since then, different 

controllers based on sliding mode control schemes have been proposed to control chaotic systems 

[22-23] 

However, its major drawback in practical applications is the chattering problem. A lot of works 

have proceeded to solve this problem by using adaptive control [24-26], intelligent approach [27-

29], and higher order sliding mode control [30]. In general, the sliding surface is designed as a 
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linear dynamic equation  s e ce= +&  . However, the linear sliding surface can only guarantee the 

asymptotic error convergence in the sliding mode, i.e., the output error cannot converge to zero in 

finite time. The terminal sliding mode TSM has a nonlinear surface pq
ees β += &  , while reaching 

the terminal sliding mode, the system tracking error can be converged to zero in finite time. 

Furthermore, TSM controller design methods have a singularity problem. Moreover, the known 

bounds of uncertainties is required. Based on TSM, some nonsingular terminal sliding mode 

(NTSM) control systems have been proposed to avoid the singularity in TSM [31-33].  

 

The objective of this paper is to force the n-dimensional chaotic system to a desired state even if 

it has uncertainties system, external and internal disturbances, by incorporation the fuzzy type-2 

approach and nonsingular terminal sliding mode (NTSM) control. We introduced an adaptive 

type-2 fuzzy system for model the unknown dynamic of system, and we use boundary layer 

method to avoid a chattering phenomenon. 

 

The organization of this paper is as follows. After a description of system and problem 

formulation in section II, the adaptive type-2 fuzzy nonsingular terminal sliding mode control 

scheme is presented in section III. Simulation example demonstrate the efficiently of the 

proposed approach in section IV. Finally, section V gives the conclusions of the advocated design 

methodology. 

 

2. DESCRIPTION OF SYSTEM AND PROBLEM FORMULATION 
 
Consider n-order uncertain chaotic system which has an affine form: 
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where 
1 2[ ( ) ( ) ( )]

n

nx x t x t x t= … ∈ℜ   is the measurable state vector, ( , )f x t  is unknown nonlinear 

continuous and bounded function, ( )u t ∈ℜ  is control input of the system, ( )d t  is the external 

bounded disturbance, and ( , )f x tD   represents the uncertainties, 

 

df tdtxfFtxf ∆≤∆≤∆< )(,),(,),(              (2) 

 

where fF ∆,  and d∆   are positive constants. 

 

The control problem is to get the system to track an n- dimensional desired vector ( )dy t   which 

belong to a class of continuous functions on 
0[ , ]t ∞  . Let’s the tracking error as; 
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Therefore, the dynamic errors of system can be obtained as; 
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The control goal considered is that; 

 

lim ( ) lim ( ) ( ) 0,d
t t

e t x t y t
→∞ →∞

= − →                  (5) 

 

2.1. Terminal Sliding Mode Control 
 
We consider a second order nonlinear system (1), the conventional TSM is described by the 

following first order terminal sliding variable; 
q p

s e eβ= +&                   (6) 

 

where 0β >  is a design constant, and ( ),  ,p q p q>   are positive odd integers. The sufficient 

condition to ensure the transition trajectory of the tracking error from approaching phase to the 

sliding one is: 

 

),(),(),(),(
2

1 2
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dt
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−≤= η&                (7) 

 

where 0η >   is a constant. 

 

If ( , )f x t   is known and free of uncertainties and external disturbances, and when the system (1) 

is restricted to the ( , ) 0s e t =  , it will be governed by an equivalent control equ   obtained by: 
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The global control is composed of the equivalent control and discontinuous term, such that; 

sgn( )dis su k s= −                  (9) 

 

where ( 0)s sk k >   is switching gain, by adding this term to (8), we obtain the global control: 
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which ensures that TSM occurs. Then, we can choose switching gain as follows: 

sk Dη= +                 (11) 

 

Where fdD ∆+∆=  . If (0) 0s ≠  , it’s clear that the tracking errors will reach the sliding mode 

( 0s =  ) within the finite time 
rt , which satisfies; 

 

(0)
r

s
t

η
≤                 (12) 
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Suppose the attaining time is 
st   from ( ) 0re t ≠   to ( ) 0s re t t+ =  . In this phase, the sliding mode 

( )0s =   is reached, i.e., the system dynamics is determined by the following nonlinear 

differential equation: 

 

0=+ pq
ee β&                 (13) 

 

By integrating the differential equation pq
ee β−=&  , we have: 
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From TSM control (10), the term containing ee
pq

&
1−   may cause a singular problem. 

  

2.2. Non Singular Terminal Sliding Mode Control 
 
In order to overcome the singularity problem in the conventional TSM systems, the proposed 

NTSM model is described as follows: 

qp
ees &

β

1
+=                 (15) 

where ,qβ  and ( )1 2p p q< <  have been defined in (6). For system (1) with the nonsingular 

sliding mode manifold (15), the control is designed as; 
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Thus to satisfy the transition condition (7), the time derivative of s is: 
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Using control law (16), 
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After some manipulations, we obtain: 
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Since 0β >  , p and q are positive odd integers ( )1 2p q< <  , we have 1 0p qe − >&  (when 0e ≠& ), 

then; 

1
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Therefore, the condition for Lyapunov stability is satisfied when 0e ≠&  , and the tracking errors 

can reach the sliding mode s=0 within finite time. Substituting the control (16) into system (4) 

yields; 
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When 0e =& , we obtain , 
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Then, for a small ( 0),ε ε >   there exists a vicinity of 0e =&  , such that e ε<&  , therefore, it is 

concluded that the NTSM manifold (15) s=0 can be reached in the phase plane in finite time. 

Note that in control law (16), the nonlinear function ( , )f x t   is unknown. Then, the purpose of 

this paper is to approximate ( , )f x t   by interval type-2 fuzzy logic system and to eliminate 

chattering, a saturation function can be used to replace the sign function in switching term. The 

adaptation law of adjustable parameter of the fuzzy system is deduced from the Lyapunov 

stability. 

 

3. ADAPTIVE INTERVAL TYPE-2 FUZZY NON-SINGULAR TERMINAL SLIDING 

MODE CONTROL 

In this section, the adaptive fuzzy system used to approximate the unknown function ( , )f x t  has 

the same structure as the output fuzzy system using the center of set method [34], then we replace 

( , )f x t  by ),(ˆ
f

xf
−−
θ , such as: 

)(),(ˆ
−−−−−

= xxf
f

T

ff
ξθθ                 (20) 

where 
f−

θ   is adjustable vector parameters. 

In order to guarantee the global stability of closed loop system (1) with the convergence of 

tracking error to zero, we propose the following control law: 









++−−= −

−−
)()(),(ˆ 2

ssignke
p

q
tyxfu s

qp
d

f
NTSM

&&& βθ             (21) 

To derive the adaptive laws of fq  , we define the optimal parameter vector 
*

f−
θ   as; 
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where fΩ  and xΩ   are constraint sets of suitable bounds on fθ   and  x , respectively, they are 

defined as; 

{ },:,: xxf
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where fM   and xM   are positive constants. 

We define the minimum approximation error as; 
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By using α=− fMF  , it can be easily concluded that w is bounded ,w α≤   (i.e. w L∞∈  ). 

 

 

To study the closed loop stability and to find the adaptation law of adjustable parameter, we 

consider the following Lyapunov function: 
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Using the control law (21), and (20), the time derivative of the NTSM manifold (15) becomes: 
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The substitution of (24) in (23) will be: 
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By choosing the following adaptation law: 
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Then,  
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From the universal approximation theorem, it is expected that α   will be very small (if not equal 

to zero) in the adaptive fuzzy system, and ( ) 0eρ ′ >&  . So, we have 0.V <&  

 

The overall scheme of the adaptive type-2 fuzzy nonsingular terminal sliding mode control in 

presence of uncertainties, external disturbance and the training data is corrupted with internal 

noise is shown in Figure 1. 

 

Figure1. Overall scheme of the adaptive type-2 fuzzy nonsingular terminal sliding mode control system. 

4. SIMULATION EXAMPLE 
 
The above described control scheme is now used to control the states of chaotic system which is 

defined as follows; 
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With initial states: (0) [0.1 0]
T

x =  . 

For free input, the simulation results of system are shown in Figure 2. 
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Figure 2. Time response (x1, x2) and typical chaotic behavior of duffing oscillator 

In order to force the states system ( ), 1,2ix t i =   to track the reference trajectories ( )dy t   and 

( )dy t&   in finite time, such as ( )( ) ( / 30) sin( ) 0.3sin(3 )dy t t tπ= +  , the adaptive interval type-2 

fuzzy nonsingular terminal sliding mode control ( )u t   is added into the system as follows: 

1 2

3

2 2 1 1
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0.4 1.1 2.1cos(1.8 ) ( , ) ( ) ( )

x x

x x x x t f x t d t u t
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We choose 15, 3, 5f q pγ = = =   and 1β =  , the TSM and NTSM manifolds are selected as, 

/q p

TSMs e eβ= +&  and ( ) /1/ p q

NTSMs e eβ= + &  , respectively. To design the fuzzy system ˆ ( , )ff x θ  , 

we define seven type-2 Gaussian membership functions depending ( ), 1,2ix t i =   selected as 

, 1,...,7l

iF l =  are shown in table. 1, with variance 0.5σ =  and initial values 2 7(0)fθ ×= Ο . 

Table 1. Interval Type-2 Fuzzy Membership Functions For ( 1,2).ix i =   

 
Mean  

 
Mean 

m1 m2 m1 m2 

1 ( )
i

iF
xµ   -3.5 -2.5 5 ( )

i
iF

xµ   0.5 1.5 

2 ( )
i

iF
xµ   -2.5 -1.5 6 ( )

i
iF

xµ   1.5 2.5 

3 ( )
i

iF
xµ   -1.5 -0.5 7 ( )

i
iF

xµ   2.5 3.5 

4 ( )
i

iF
xµ   -0.5 0.5    

 

In this section, two control laws are adopted, adaptive type-2 fuzzy nonsingular terminal sliding 

mode control (AT- 2FNTSM) described in (21), and adaptive type-2 fuzzy terminal sliding mode 

control (AT-2FTSM), which is designed as follow; 
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The simulation results are presented in the presence of uncertainties 

( ) ( )1 2( , ) sin 2 ( ) sin 3 ( )f x t x t x tπ π∆ =  , external disturbance ( ) sin( )d t t=  , and white Gaussian 

noise is applied to the measured signal ( ), 1,2ix t i =   with Signal to Noise Ratios (SNR=20dB). A 

boundary layer method is used to eliminate chattering. 

4.1. Adaptive Interval Type-2 Fuzzy Terminal Sliding Mode Control (AT-2FTSM) 

The tracking performance of states ( )x t  is shown in Figure 3. The control input ( )u t  and the 

phase-plane trajectories of system are represented in Figures 4-5. 

0 2 4 6 8 10 12 14 16 18 20

-0.1

-0.05

0

0.05

0.1

 

 

x1

yd

0 2 4 6 8 10 12 14 16 18 20

-0.2

0

0.2

time(s)

 

 

x2

yd'

 
Figure 3. The output trajectories of (x1, x2). 

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

e1

e
2

 

 

ideal sliding mode

practical trajectory

 

      -0.1 -0.05 0 0.05 0.1
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

 

 

x1,x2

yd,yd'

 

Figure 4. Phase-plane of tracking error and typical chaotic behavior of duffing oscillator 
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Figure5. Control input u(t) 

4.2. Adaptive Interval Type-2 Fuzzy Non-singular Terminal Sliding Mode Control 

(AT-2FNTSM) 
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Figure6. The output trajectories of (x1, x2) 
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Figure7. Phase-plane of tracking error and typical chaotic behavior of duffing oscillator 
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Figure8. Control input u(t) 

According to the above simulation results, we can see that both controller provide a good tracking 

of outputs system 
1 2( , )x x  to their trajectories in finite time. Furthermore, a singularity problem 

occurs in the case of AT-2FTSM control as shown in Figure 5. The proposed approach allows 

obtaining a smooth control signal (Figure 8), then, the NTSM manifold (15) can eliminate the 

singularity problem associated with conventional TSM manifold. 

 

5. CONCLUSION 
 
In this paper, the problem of stabilization orbit of nonlinear uncertain chaotic system in the 

presence of external, internal disturbances and disturbances is solved by incorporation of interval 

type-2 fuzzy approach and non-singular terminal sliding mode control. In order to eliminate the 

chattering phenomenon efficiently, a boundary layer method is used, and an adaptive interval 

type-2 fuzzy system is introduced to approximate the unknown part of system. Based on the 

Laypunov stability criterion, the adaptation law of adjustable parameters of the type-2 fuzzy 

system and the stability of closed loop system are ensured. A simulation example has been 

presented to illustrate the effectiveness and the robustness of the proposed approach. 
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