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ABSTRACT 

 
In this paper we introduce an approach to decrease dimensions of logical elements "AND" based on field-

effect heterotransistors. Framework the approach one shall consider a heterostructure with specific struc-

ture. Several specific areas of the heterostructure should be doped by diffusion or ion implantation. Both 

types of doping should be optimized. 
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1.INTRODUCTION 

 
Currently density of elements of integrated circuits and their performance intensively increasing. 

Simultaneously with increasing of the density of the elements of integrated circuit their dimen-

sions decreases. One way to decrease dimensions of these elements of these integrated circuit is 

manufacturing of these elements in thin-film heterostructures [1-4]. An alternative approach to 

decrease dimensions of the elements of integrated circuits is using laser and microwave types an-

nealing [5-7]. Both types of annealing (laser and microwave) gives a possibility to obtain inho-

mogeneous distribution of temperature. Inhomogeneity of temperature leads to inhomogeneity of 

all temperature- dependent parameters (diffusion coefficient and other) due to the Arrhenius law. 

The inhomogeneity of properties of materials during doping gives a possibility to decrease di-

mensions of elements of integrated circuits. Changing of properties of electronic materials could 

be obtain by using radiation processing of these materials [8,9]. 

 

In this paper we consider logical element "AND" based on field-effect transistors described in 

Ref. [10] (see Fig.1). We assume, that the considered element has been manufactured in hetero-

structure from Fig. 1. The heterostructure consist of a substrate and an epitaxial layer. The epitax-

ial layer includes into itself several sections manufactured by using another materials. The sec-

tions should be doped for generation into these sections required type of conductivity (n or p). We 

consider two types of doping: diffusion of dopant and implantation of ions of dopants. Frame-

work this paper we analyzed redistribution of dopant during annealing of dopant and/ or radiation 

defects to formulate conditions for decreasing of dimensions of the considered element "AND". 
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Fig. 1a. Structure of element "OR". View from top 
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Fig. 1b. Heterostructure with two layers and sections in the epitaxial layer 

 

2.METHOD OF SOLUTION 

 
To solve our aim we shall analyze spatio-temporal distribution of concentration of dopant. The 

distribution has been determined by solving the following boundary problem 
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Function C(x,y,z,t) describes the spatio-temporal distribution of concentration of dopant; T is the 

temperature of annealing; DС is the dopant diffusion coefficient. Value of dopant diffusion coeffi-

cient will be different in different materials and will be changed with changing of temperature of 

annealing (with account Arrhenius law). The value also depends on concentrations of dopant and 

radiation defects. All above dependences could be accounted by the following relation [9, 11,12] 
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The function DL(x,y,z,T) gives a possibility to take into account the spatial and temperature de-

pendences of dopant diffusion coefficient (due to presents several layers in heterostructure and 

Arrhenius law). The function P (x,y,z,T) describes the limit of solubility of dopant. The parameter 

γ ∈[1,3] describes quantity of charged defects, which were interacted (in average) with atoms of 

dopant [11]. The function V (x,y,z,t) describes the spatio-temporal distribution of concentration of 

radiation vacancies. The parameter V* describes the equilibrium distribution of concentration of 

vacancies. It should be noted, that using diffusion type of doping did not generation radiation de-

fects. In this situation ζ1= ζ2= 0. We determine spatio-temporal distributions of concentrations of 

radiation defects by solving the following system of equations [9,12] 
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Boundary and initial conditions for these equations are 
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Here ρ =I,V. The function I (x,y,z,t) describes variation of distribution of concentration of radiation 

interstitials in space and time. The function Dρ(x,y,z,T) describes dependences of the diffusion 

coefficients of point radiation defects on spatial coordinates and temperature. Terms V
2
(x,y,z,t) 

and I2(x,y,z,t) correspond to generation divacancies and diinterstitials; kI,V(x,y,z,T) is the parameter 

of recombination of point radiation defects; kI,I(x,y,z,T) and kV,V(x,y,z,T) are the parameters of 

generation of simplest complexes of point radiation defects. 
 

We determine concentrations of divacancies ΦV (x,y,z,t) and dinterstitials ΦI (x,y,z,t) as functions 
of space and time by solving the following system of equations [9,12] 
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Boundary and initial conditions for these equations are 
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Here DΦρ(x,y,z,T) are the diffusion coefficients of the above complexes of radiation defects; 

kI(x,y,z,T) and kV (x,y,z,T) are the parameters of decay of these complexes. 

 

We used method of averaging of function corrections [13] with decreased quantity of ite-

ration steps [14] to determine distributions of concentrations of dopant and radiation de-

fects in space and time. Framework the initial step of the approach we consider solutions 
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cos (π  n χ/Lχ). We consider the above solutions as initial-order approximations of concen-

trations of dopant and radiation defects. 

 

Approximations of concentrations of dopant and radiation defects with the second and 

higher orders could be determine framework standard iterative procedure [13,14]. The 

procedure based on replacement of the functions C(x,y,z,t), I(x,y,z,t), V(x,y,z,t), ΦI(x,y,z, 

t), ΦV(x,y,z,t) in the right sides of the Eqs. (1), (4) and (6) on the following sums αnρ+ρ n-



International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 

37 

1(x,y,z,t). Framework the standard iterative procedure we obtain equations for the second-

order approximations of concentrations of dopant and radiation defects 
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Integration of the left and right sides of Eqs.(8)-(10) gives us possibility to obtain relations for the 

second-order approximations of concentrations of dopant and radiation defects in final form 
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Average values of the considered approximations have been determined by the following rela-

tions [13,14] 
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Substitution of approximations (8a)-(10a) into the previous relation gives the possibility to obtain 

relations for the average values α 2ρ in the following final form 
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.  

After the substitution we obtain the equation for parameter α2C for any value of parameter γ. We 

analyzed distributions of concentrations of dopant and radiation defects in space and time by us-

ing the second-order approximations framework the method of averaged of function corrections. 
The obtained analytical results have been checked by comparison with results of numerical simu-

lation. 

 
3.DISCUSSION 

 

In this section we analyzed the spatio-temporal distribution of concentration of dopant in the con-

sidered heterostructure during annealing. Figs. 2 shows spatial distributions of concentrations of 

dopants infused (Fig. 2a) or implanted (Fig. 2b) in epitaxial layer. Value of annealing time is 

equal for all distributions framework every figure 2a and 2b. Numbers of curves increased with 

increasing of difference between values of dopant diffusion coefficients in layers of heterostruc-

ture. The figures show that presents of interface between layers of heterostructure gives us possi-
bility to increase absolute value of gradient of concentration of dopant in direction, which is per-

pendicular to the interface. We obtain increasing of absolute value of the gradient in neighbor-

hood of the interface. Due to the increasing one can obtain decreasing dimensions of transistors, 
which have been used in the element “AND”. At the same time it will be increased homogeneity 

of concentration of dopant in enriched area. 
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To choose annealing time it should be accounted decreasing of absolute value of gradient of con-
centration of dopant in neighborhood of interface between substrate and epitaxial layer with in-

creasing of annealing time. Decreasing of value of annealing time leads to decreasing of homo-

geneity of concentration of dopant in enriched area (see Fig. 3a for diffusion doping of materials 
and Fig. 3b for ion doping of materials). Let us determine compromise value of annealing time 

framework recently introduced criteria [15-20]. Framework the criteria we approximate real dis-

tributions of concentration of dopant by ideal rectangle distribution ψ (x,y,z). Farther we deter-

mine compromise value of annealing time by minimization of the mean-squared error 
 

( ) ( )[ ]∫ ∫ ∫ −Θ=
x y zL L L

zyx

xdydzdzyxzyxC
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U
0 0 0

,,,,,
1

ψ .      (8) 

 

 

Fig.2a. Distributions of concentration of infused dopant near interface between layers of hetero-

structure for the case, when value of dopant diffusion coefficient in epitaxial layer is larger, than 
value of dopant diffusion coefficient in substrate, and for the same annealing time. Numbers of 

curves increased with increasing of difference between values of dopant diffusion coefficient in 

layers of heterostructure 
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Fig.2b. Distributions of concentration of implanted dopant near interface between layers of hete-

rostructure for the case, when value of dopant diffusion coefficient in epitaxial layer is larger, 

than value of dopant diffusion coefficient in substrate and for two annealing times: Θ = 0.0048 

(Lx
2
+Ly

2
+Lz

2
)/D0 (for curves 1 and 3) and Θ = 0.0057(Lx

2
+Ly

2
+Lz

2
)/D0 (for curves 2 and 4). Num-

bers of curves increased with increasing of difference between values of dopant diffusion coeffi-

cient in layers of heterostructure 
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Fig. 3a. Spatial distributions of infused dopant in heterostructure after for different values of an-

nealing time. Curve 1 is idealized distribution of dopant. Curves 2-4 are real distributions of con-

centration of dopant. Number of curves increases with increasing of value of annealing time 
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Fig. 3b. Spatial distributions of implanted dopant in heterostructure after for different values of 

annealing time. Curve 1 is idealized distribution of dopant. Curves 2-4 are real distributions of 

concentration of dopant. Number of curves increases with increasing of value of annealing time. 

 

We show dependences of optimal annealing time on parameters on Figs. 4. The Fig. 4a the show 

dependences for diffusion type of doping. The Fig. 4b the show dependences for ion type of dop-

ing. It should be noted, that one shall anneal radiation defects after ion implantation. One could 
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find spreading of concentration of distribution of dopant during this annealing. It will be better to 

optimize parameters of technological process so, that the dopant achieves appropriate interfaces 

between materials of heterostructure during the annealing of radiation defects. In the case, when 

one has no possibility to make above optimization and dopant did not achieves any interfaces dur-

ing annealing of radiation defects, one shall to make additional annealing of the dopant. Optimal 

value of the additional annealing time is smaller, than analogous annealing time of infused do-

pant. At the same time ion type of doping gives us possibility to decrease mismatch-induced 

stress in heterostructure [21]. 
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Fig.4a. Dependences of dimensionless optimal annealing time of infused dopant. Curve 1 de-

scribes dimensionless optimal annealing time as the function of the relation a/L for ξ = γ = 0 and 

for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 

2 describes dimensionless optimal annealing time as the function of the parameter ε for a/L=1/2 

and ξ = γ = 0 and for equal to each other values of dopant diffusion coefficient in all parts of hete-

rostructure. Curve 3 describes dimensionless optimal annealing time as the function of the para-

meter ξ for a/L=1/2 and ε = γ = 0 and for equal to each other values of dopant diffusion coefficient 

in all parts of heterostructure. Curve 4 describes dimensionless optimal annealing time as the 

function of the parameter γ  for a/L=1/2 and ε = ξ  = 0 and for equal to each other values of dopant 

diffusion coefficient in all parts of heterostructure 
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Fig.4b. Dependences of dimensionless optimal annealing time of implanted dopant. Curve 1 de-

scribes dimensionless optimal annealing time as the function of the relation a/L for ξ = γ = 0 and 

for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 

2 describes dimensionless optimal annealing time as the function of the parameter ε for a/L=1/2 

and ξ = γ = 0 and for equal to each other values of dopant diffusion coefficient in all parts of hete-

rostructure. Curve 3 describes dimensionless optimal annealing time as the function of the para-

meter ξ for a/L=1/2 and ε = γ = 0 and for equal to each other values of dopant diffusion coefficient 

in all parts of heterostructure. Curve 4 describes dimensionless optimal annealing time as the 

function of the parameter γ  for a/L=1/2 and ε = ξ  = 0 and for equal to each other values of dopant 

diffusion coefficient in all parts of heterostructure 
 
 

4. CONCLUSIONS 
 

In this paper we model redistribution of infused and implanted dopants during manufacture logi-

cal elements “OR” based on field-effect heterotransistors. Several recommendations to optimize 

manufacture the heterotransistors have been formulated. Analytical approach to model diffusion 

and ion types of doping with account concurrent changing of parameters in space and time has 

been introduced. At the same time the approach gives us possibility to take into account nonli-

nearity of doping processes. 
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