Variation Of Mismatch-Induced Stress in A HeTEROSTRUCTURE WITH CHANGING TEMPERATURE OF GROWTH

E.L. Pankratov ${ }^{1,3}$ and E.A. Bulaeva ${ }^{1,2}$
${ }^{1}$ Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia
${ }^{2}$ Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky street, Nizhny Novgorod, 603950, Russia
${ }^{3}$ Nizhny Novgorod Academy of the Ministry of Internal Affairs of Russia, 3 Ankudinovskoe Shosse, Nizhny Novgorod, 603950, Russia

Abstract

In this paper we analyzed influence of diffusion of material of an epitaxial layer of a heterostructure during high-temperature growth into next layer (next epitaxial layer or substrate) of the heterostructure on mis-match-induced stress. It has been shown, that value of mismatch-induced stress in heterostructure depends on temperature of growth, because the considered diffusion depends on the temperature. We also introduce an analytical approach to model the diffusion and relaxation of the mismatch-induced stress.

KEYWORDS

Heterostructure; Mismatch-Induced Stress; Temperature Of Growth; Mixing Of Materials Of Layers Of Heterostructure

1. Introduction

In the present time large number of solid state electronic devices have been manufactured based on heterostructures. The widely using of heterostructures leads to necessity to improve of their properties. It is known, that mismatch-induced stress presents in all heterostructures. The stress in heterostructures could leads to generation misfit dislocations. One way to decrease mismatchinduced stress is choosing materials of heterostructure with as small as possible mismatch of lattice constants [1-3]. Another way to decrease mismatch-induced stress is using a buffer layer, manufactured by using another materials, between layers of heterostructure. Lattice constant of the buffer layer should be average in comparison with lattice constants of nearest layers of heterostructure $[4,5]$.

In this paper we consider a heterostructure with two layers (see Fig. 1). The layers are a substrate and an epitaxial layer. At a high temperature of growth (for example, during epitaxy from gas phase) of heterostructure one can find intensive diffusion of material of the epitaxial layer into the substrate. Our main aim framework the present paper is analysis of variation of mismatchinduced stress in the considered heterostructure with diffusion of material of the epitaxial into the substrate.

2. Method of Solution

Let us to describe diffusion of material of epitaxial layer in the substrate by solution of the following boundary problem [6-11]

$$
\begin{array}{r}
\quad \frac{\partial C(x, y, z, t)}{\partial t}=\frac{\partial}{\partial x}\left[D \frac{\partial C(x, y, z, t)}{\partial x}\right]+\frac{\partial}{\partial y}\left[D \frac{\partial C(x, y, z, t)}{\partial y}\right]+\frac{\partial}{\partial z}\left[D \frac{\partial C(x, y, z, t)}{\partial z}\right]+ \\
+\Omega \frac{\partial}{\partial x}\left[\frac{D_{S}}{k T} \nabla_{S} \mu(x, y, z, t) \int_{0}^{L_{z}} C(x, y, W, t) d W\right]+\Omega \frac{\partial}{\partial y}\left[\frac{D_{S}}{k T} \nabla_{S} \mu(x, y, z, t) \int_{0}^{L_{z}} C(x, y, W, t) d W\right] \tag{1}
\end{array}
$$

Fig. 1. Heterostructure, which consist of a substrate and an epitaxial layer

$$
\begin{gathered}
\left.\frac{\partial C(x, y, z, t)}{\partial x}\right|_{x=L_{x}}=0,\left.\frac{\partial C(x, y, z, t)}{\partial y}\right|_{y=0}=0,\left.\frac{\partial C(x, y, z, t)}{\partial y}\right|_{x=L_{y}}=0,\left.\frac{\partial C(x, y, z, t)}{\partial z}\right|_{z=0}=0, \\
\left.\frac{\partial C(x, y, z, t)}{\partial z}\right|_{x=L_{z}}=0, C(x, y, z, 0)=f_{C}(x, y, z), C(0, y, z, t)=C_{0} .
\end{gathered}
$$

Here $C(x, y, z, t)$ is the spatio-temporal distribution of concentration of material of epitaxial layer; atomic volume of the dopant describes by Ω; surficial gradient describes by ∇_{S}; the integral $\int_{0}^{L_{z}} C(x, y, z, t) d z$ describes surficial concentration of dopant on interface between materials of heterostructure; $\mu(x, y, z, t)$ is the chemical potential; D and D_{S} are the coefficients of volumetric and surficial diffusions (reason of the surficial diffusion is the mismatch-induced stress). Values of the volumetric and surficial diffusion coefficients are differ in different materials. The diffusion coefficients will be changed in during heating and cooling of heterostructure. Different levels of doping also leads to changing of the diffusion coefficients. We approximate dopant diffusion coefficients by the following functions [7]

$$
\begin{equation*}
D_{C}=D_{L}(x, y, z, T)\left[1+\xi \frac{C^{\gamma}(x, y, z, t)}{P^{\gamma}(x, y, z, T)}\right], D_{S}=D_{S L}(x, y, z, T)\left[1+\xi_{s} \frac{C^{\gamma}(x, y, z, t)}{P^{\gamma}(x, y, z, T)}\right] \tag{2}
\end{equation*}
$$

The functions $D_{L}(x, y, z, T)$ and $D_{L S}(x, y, z, T)$ describes spatial and temperature dependences of diffusion coefficients. The functions could be obtained by accounting all layers of heterostruicture and Arrhenius law. T is the temperature of grown. $P(x, y, z, T)$ is the limit of solubility of material of the epitaxial layer in the substrate. Parameter γ depends on properties of materials and will be integer in the following interval $\gamma \in[1,3]$ (the dependence described in details in [7]).

Chemical potential μ in the Eq.(1) depends on properties of materials of heterostructure and could be approximated by the following relation [10]

$$
\begin{equation*}
\mu=E(z) \Omega \sigma_{i j}\left[u_{i j}(x, y, z, t)+u_{j i}(x, y, z, t)\right] / 2 \tag{3}
\end{equation*}
$$

Function $E(z)$ describes spatial dependence of Young modulus. Tensor $\sigma_{i j}$ describes the stress tensor; $u_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)$ is the deformation tensor; u_{i}, u_{j} are the components $u_{x}(x, y, z, t)$, $u_{y}(x, y, z, t)$ and $u_{z}(x, y, z, t)$ of the displacement vector $\vec{u}(x, y, z, t) ; x_{i}, x_{j}$ are the coordinate x, y, z. The Eq. (3) could be written in the following equivalent form

$$
\begin{gathered}
\mu(x, y, z, t)=E(z) \frac{\Omega}{2}\left[\frac{\partial u_{i}(x, y, z, t)}{\partial x_{j}}+\frac{\partial u_{j}(x, y, z, t)}{\partial x_{i}}\right]\left\{\frac{1}{2}\left[\frac{\partial u_{i}(x, y, z, t)}{\partial x_{j}}+\frac{\partial u_{j}(x, y, z, t)}{\partial x_{i}}\right]-\right. \\
\left.-\varepsilon_{0} \delta_{i j}+\frac{\sigma(z) \delta_{i j}}{1-2 \sigma(z)}\left[\frac{\partial u_{k}(x, y, z, t)}{\partial x_{k}}-3 \varepsilon_{0}\right]-K(z) \beta(z)\left[T(x, y, z, t)-T_{0}\right] \delta_{i j}\right\} .
\end{gathered}
$$

Here σ is Poisson coefficient; the normalized difference $\varepsilon_{0}=\left(a_{s}-a_{E L}\right) / a_{E L}$ describes the mismatch parameter; parameters $a_{s}, a_{E L}$ in the above difference are lattice distances of the substrate and the epitaxial layer; K is the modulus of uniform compression; β is the coefficient of thermal expansion; T_{r} is the equilibrium temperature, which coincide (in our case) with room temperature. Components of the displacement vector have been described by the following equations [11]

$$
\left\{\begin{array}{l}
\rho(z) \frac{\partial^{2} u_{x}(x, y, z, t)}{\partial t^{2}}=\frac{\partial \sigma_{x x}(x, y, z, t)}{\partial x}+\frac{\partial \sigma_{x y}(x, y, z, t)}{\partial y}+\frac{\partial \sigma_{x z}(x, y, z, t)}{\partial z} \\
\rho(z) \frac{\partial^{2} u_{y}(x, y, z, t)}{\partial t^{2}}=\frac{\partial \sigma_{y x}(x, y, z, t)}{\partial x}+\frac{\partial \sigma_{y y}(x, y, z, t)}{\partial y}+\frac{\partial \sigma_{y z}(x, y, z, t)}{\partial z} \\
\rho(z) \frac{\partial^{2} u_{z}(x, y, z, t)}{\partial t^{2}}=\frac{\partial \sigma_{z x}(x, y, z, t)}{\partial x}+\frac{\partial \sigma_{z y}(x, y, z, t)}{\partial y}+\frac{\partial \sigma_{z z}(x, y, z, t)}{\partial z}
\end{array}\right.
$$

The stress tensor $\sigma_{i j}$ correlates with components of the displacement vector by the following relation $\quad \sigma_{i j}=\frac{E(z)}{2[1+\sigma(z)]}\left[\frac{\partial u_{i}(x, y, z, t)}{\partial x_{j}}+\frac{\partial u_{j}(x, y, z, t)}{\partial x_{i}}-\frac{\delta_{i j}}{3} \frac{\partial u_{k}(x, y, z, t)}{\partial x_{k}}\right]+\delta_{i j} \frac{\partial u_{k}(x, y, z, t)}{\partial x_{k}} \times$ $\times K(z)-\beta(z) K(z)\left[T(x, y, z, t)-T_{r}\right]$.

The function $\rho(z)$ describes the density of materials of heterostructure. The tenzor $\delta_{i j}$ describes the Kronecker symbol. Accounting relation for $\sigma_{i j}$ in the previous system of equations last system of equation could be written as

$$
\begin{align*}
& \rho(z) \frac{\partial^{2} u_{x}(x, y, z, t)}{\partial t^{2}}=\left\{K(z)+\frac{5 E(z)}{6[1+\sigma(z)]}\right\} \frac{\partial^{2} u_{x}(x, y, z, t)}{\partial x^{2}}+\left\{K(z)-\frac{E(z)}{3[1+\sigma(z)]}\right\} \frac{\partial^{2} u_{y}(x, y, z, t)}{\partial x \partial y}+ \\
& +\frac{E(z)}{2[1+\sigma(z)]}\left[\frac{\partial^{2} u_{y}(x, y, z, t)}{\partial y^{2}}+\frac{\partial^{2} u_{z}(x, y, z, t)}{\partial z^{2}}\right]+\left[K(z)+\frac{E(z)}{\partial[1+\sigma(z)]}\right] \frac{\partial^{2} u_{z}(x, y, z, t)}{\partial x \partial z}- \\
& -\quad K(z) \beta(z) \frac{\partial T(x, y, z, t)}{\partial x}
\end{aligned}+\begin{aligned}
& \rho(z) \frac{\partial^{2} u_{y}(x, y, z, t)}{\partial t^{2}}=\frac{E(z)}{2[1+\sigma(z)]}\left[\frac{\partial^{2} u_{y}(x, y, z, t)}{\partial x^{2}}+\frac{\partial^{2} u_{x}(x, y, z, t)}{\partial x \partial y}\right]-K(z) \beta(z) \frac{\partial T(x, y, z, t)}{\partial y}+ \\
& +\frac{\partial}{\partial z}\left\{\frac{E(z)}{2[1+\sigma(z)]}\left[\frac{\partial u_{y}(x, y, z, t)}{\partial z}+\frac{\left.\partial u_{z}(x, y, z, t)\right]}{\partial y}\right]\right\}+\left\{\frac{5 E(z)}{12[1+\sigma(z)]}+K(z)\right\} \frac{\partial^{2} u_{y}(x, y, z, t)}{\partial y^{2}}+ \\
& +\left\{K(z)-\frac{E(z)}{6[1+\sigma(z)]}\right\} \frac{\partial^{2} u_{y}(x, y, z, t)}{\partial y \partial z}+K(z) \frac{\partial^{2} u_{y}(x, y, z, t)}{\partial x \partial y} \\
& \rho(z) \frac{\partial^{2} u_{z}(x, y, z, t)}{\partial t^{2}}=\frac{E(z)}{2}\left[\frac{\partial^{2} u_{z}(x, y, z, t)}{\partial x^{2}}+\frac{\partial^{2} u_{z}(x, y, z, t)}{\partial y^{2}}+\frac{\partial^{2} u_{x}(x, y, z, t)}{\partial x \partial z}+\frac{\partial^{2} u_{y}(x, y, z, t)}{\partial y \partial z}\right] \times \tag{4}\\
& \times \frac{1}{1+\sigma(z)}+\frac{\partial}{\partial z}\left\{K (z) \left[\frac{\partial u_{x}(x, y, z, t)}{\partial x}+\frac{\partial u_{y}(x, y, z, t)}{\partial y}+\frac{\left.\left.\left.\partial u_{x}(x, y, z, t)\right]\right\}-\beta(z) \frac{\partial T(x, y, z, t)}{\partial z}\right]}{\partial z} \times\right.\right. \\
& \times K(z)+\frac{1}{6} \frac{\partial}{\partial z}\left\{\frac{E(z)}{1+\sigma(z)}\left[6 \frac{\partial u_{z}(x, y, z, t)}{\partial z}-\frac{\partial u_{x}(x, y, z, t)}{\partial x}-\frac{\partial u_{y}(x, y, z, t)}{\partial y}-\frac{\partial u_{z}(x, y, z, t)}{\partial z}\right]\right\} .
\end{align*}
$$

Conditions for the system of Eqs.(4) are

$$
\begin{aligned}
& \frac{\partial \vec{u}(0, y, z, t)}{\partial x}=0 ; \frac{\partial \vec{u}\left(L_{x}, y, z, t\right)}{\partial x}=0 ; \frac{\partial \vec{u}(x, 0, z, t)}{\partial y}=0 ; \frac{\partial \vec{u}\left(x, L_{y}, z, t\right)}{\partial y}=0 \\
& \frac{\partial \vec{u}(x, y, 0, t)}{\partial z}=0 ; \frac{\partial \vec{u}\left(x, y, L_{z}, t\right)}{\partial z}=0 ; \vec{u}(x, y, z, 0)=\vec{u}_{0} ; \vec{u}(x, y, z, \infty)=\vec{u}_{0}
\end{aligned}
$$

We determine spatio-temporal distributions of concentration of material of epitaxial layer in the substrate by solving the Eq.(1) framework method of averaging of function corrections in the standard form [12,13]. Previously we transform the Eq.(1) to the following form with account initial distributions of the considered concentrations

$$
\begin{gather*}
\frac{\partial C(x, y, z, t)}{\partial t}=\frac{\partial}{\partial x}\left[D \frac{\partial C(x, y, z, t)}{\partial x}\right]+\frac{\partial}{\partial y}\left[D \frac{\partial C(x, y, z, t)}{\partial y}\right]+\frac{\partial}{\partial z}\left[D \frac{\partial C(x, y, z, t)}{\partial z}\right]+ \\
+\Omega \frac{\partial}{\partial x}\left[\frac{D_{S}}{k T} \nabla_{s} \mu(x, y, z, t) \int_{0}^{L_{z}} C(x, y, W, t) d W\right]+\Omega \frac{\partial}{\partial y}\left[\frac{D_{S}}{k T} \nabla_{s} \mu(x, y, z, t) \int_{0}^{L_{z}} C(x, y, W, t) d W\right]+ \\
+f_{C}(x, y, z) \delta(t) \tag{1a}
\end{gather*}
$$

After that we replace the required function $C(x, y, z, t)$ in right side of Eq. (1a) on its not yet known average value $\alpha_{1 c}$. In this situation we obtain equation to determine the first- order approximations of the considered concentrations in the following form

$$
\begin{gather*}
\frac{\partial C_{1}(x, y, z, t)}{\partial t}=\alpha_{1 C} \Omega \frac{\partial}{\partial x}\left[z \frac{D_{S}}{k T} \nabla_{s} \mu(x, y, z, t)\right]+\alpha_{1 c} \Omega \frac{\partial}{\partial y}\left[z \frac{D_{S}}{k T} \nabla_{s} \mu(x, y, z, t)\right]+ \\
+f_{c}(x, y, z) \delta(t) . \tag{1b}
\end{gather*}
$$

After integration of the left and right sides of the Eq.(1b) gives us possibility to obtain relation for the first-order approximation of concentration of material of the epitaxial layer in the substrate in the following form

$$
\begin{align*}
& C_{1}(x, y, z, t)=\alpha_{1 C} \Omega \frac{\partial}{\partial x} \int_{0}^{t} D_{S L}(x, y, z, T) \frac{z}{k T} \nabla_{S} \mu(x, y, z, \tau)\left[1+\frac{\xi_{s} \alpha_{1 C}^{\gamma}}{P^{\gamma}(x, y, z, T)}\right] d \tau+ \\
& \quad+\alpha_{1 C} \frac{\partial}{\partial y} \int_{0}^{1} D_{S L}(x, y, z, T) \frac{z}{k T} \nabla_{s} \mu(x, y, z, \tau)\left[1+\frac{\xi_{s} \alpha_{1 C}^{\gamma}}{P^{\gamma}(x, y, z, T)}\right] d \tau+f_{C}(x, y, z) \tag{1c}
\end{align*}
$$

We determine average values of the first-order approximations of considered concentration by using the following relations [12,13]

$$
\begin{equation*}
\alpha_{1 C}=\frac{1}{\Theta L_{x} L_{y} L_{z}} \int_{0}^{\Theta} \int_{0}^{L_{L}^{L_{L} L_{z}}} \int_{0} \int_{0}(x, y, z, t) d z d y d x d t . \tag{5}
\end{equation*}
$$

Substitution of the relation (1c) into relation (5) gives us possibility to obtain the following relations

$$
\alpha_{1 C}=\frac{1}{L_{x} L_{y} L_{z}} \int_{0}^{L_{L} L_{y} L_{z}} \int_{0} f_{C}(x, y, z) d z d y d x,
$$

Farther we used standard iteration procedure of method of averaging of function corrections [12, 13] to obtain the second-order approximation of concentration of material of epitaxial layer in the substrate. Framework this procedure to calculate n-th-order approximation of concentration of material of epitaxial layer in the substrate we replace the required concentration $C(x, y, z, t)$ in the right side of Eq. ($1 a$) on the following sum $\alpha_{n c}+C_{n-1}(x, y, z, t)$. This substitution gives us possibility to obtain equation for the second-order approximation of the required concentration

$$
\begin{align*}
& \quad \frac{\partial C_{2}(x, y, z, t)}{\partial t}=\frac{\partial}{\partial x}\left(D_{L}(x, y, z, T)\left\{1+\xi \frac{\left[\alpha_{2 C}+C_{1}(x, y, z, t)\right]^{\gamma}}{P^{\gamma}(x, y, z, T)}\right\} \frac{\partial C_{1}(x, y, z, t)}{\partial x}\right)+ \\
& +\frac{\partial}{\partial y}\left(D_{L}(x, y, z, T)\left\{1+\xi \frac{\left[\alpha_{2 C}+C_{1}(x, y, z, t)\right]^{\gamma}}{P^{\gamma}(x, y, z, T)}\right\} \frac{\partial C_{1}(x, y, z, t)}{\partial y}\right)+\frac{\partial}{\partial z}\left(\frac{\partial C_{1}(x, y, z, t)}{\partial z} \times\right. \\
& \left.\quad \times D_{L}(x, y, z, T)\left\{1+\xi \frac{\xi\left[\alpha_{2 c}+C_{1}(x, y, z, t)\right]^{\gamma}}{P^{\gamma}(x, y, z, T)}\right\}\right)+f_{C}(x, y, z) \delta(t)+\Omega \frac{\partial}{\partial x}\left[\frac{D_{S}}{k T} \times\right. \tag{1d}\\
& \left.\times \nabla_{s} \mu(x, y, z, t) \int_{0}^{L_{p}} C_{1}(x, y, W, t) d W\right]+\Omega \frac{\partial}{\partial y}\left[\frac{D_{s}}{k T} \nabla_{S} \mu(x, y, z, t) \int_{0}^{L_{z}} C_{1}(x, y, W, t) d W\right] .
\end{align*}
$$

After integration of the left and right sides of the Eq.(1d) gives us possibility to obtain relation for the second-order approximation of concentration of material of the epitaxial layer in the substrate in the following form

$$
\begin{gather*}
C_{2}(x, y, z, t)=\frac{\partial}{\partial x} \int_{0}^{t} D_{L}(x, y, z, T)\left\{1+\xi \frac{\left[\alpha_{2 C}+C_{1}(x, y, z, \tau)\right]^{\gamma}}{P^{\gamma}(x, y, z, T)}\right\} \frac{\partial C_{1}(x, y, z, \tau)}{\partial x} d \tau+ \\
+\frac{\partial}{\partial y} \int_{0}^{t} D_{L}(x, y, z, T)\left\{1+\xi \frac{\left[\alpha_{2 C}+C_{1}(x, y, z, \tau)\right]^{\gamma}}{P^{\gamma}(x, y, z, T)}\right\} \frac{\partial C_{1}(x, y, z, \tau)}{\partial y} d \tau+\frac{\partial}{\partial z} \int_{0}^{t} \frac{\partial C_{1}(x, y, z, \tau)}{\partial z} \times \\
\times D_{L}(x, y, z, T)\left\{1+\xi \frac{\left[\alpha_{2 C}+C_{1}(x, y, z, \tau)\right]^{\gamma}}{P^{\gamma}(x, y, z, T)}\right\} d \tau+\Omega \frac{\partial}{\partial x} \int_{0}^{t} \nabla_{S} \mu(x, y, z, \tau) \int_{0}^{L_{z}} C_{1}(x, y, W, \tau) d W \times \\
\times \frac{D_{S}}{k T} d \tau+\Omega \frac{\partial}{\partial y} \int_{0}^{t} \frac{D_{S}}{k T} \nabla_{S} \mu(x, y, z, \tau) \int_{0}^{L_{z}} C_{1}(x, y, W, \tau) d W d \tau+f_{C}(x, y, z) \tag{1d}
\end{gather*}
$$

We determine average value of the second-order approximation of the considered concentration by using standard relation $[12,13]$.

$$
\begin{equation*}
\alpha_{2 C}=\frac{1}{\Theta L_{x} L_{y} L_{z}} \int_{0}^{\Theta} \int_{0}^{L_{x}} \int_{0}^{L_{y} L_{z}} \int_{0}\left[C_{2}(x, y, z, t)-C_{1}(x, y, z, t)\right] d z d y d x d t \tag{6}
\end{equation*}
$$

Substitution of the relation (1e) into the relation (6) gives us possibility to obtain zero value of the required average value $\alpha_{2 C}$.

Now we determine components of displacement vector by solution of the system of Eqs.(4). To determine components of displacement vector we used method of averaging of function corrections in standard form. Framework the approach we replace the above components in right sides of Eqs.(4) on their not yet known average values α_{i}. The substitution leads to the following results

$$
\begin{gathered}
\rho(z) \frac{\partial^{2} u_{1 x}(x, y, z, t)}{\partial t^{2}}=-K(z) \beta(z) \frac{\partial T(x, y, z, t)}{\partial x}, \rho(z) \frac{\partial^{2} u_{1 y}(x, y, z, t)}{\partial t^{2}}=-K(z) \beta(z) \frac{\partial T(x, y, z, t)}{\partial y}, \\
\rho(z) \frac{\partial^{2} u_{1 z}(x, y, z, t)}{\partial t^{2}}=-K(z) \beta(z) \frac{\partial T(x, y, z, t)}{\partial z} .
\end{gathered}
$$

Integration of the left and right sides of the above equations leads to obtain relation for the second-order approximation of the first-order approximations of components of displacement vector. The first-order approximations could be written as

$$
\left\{\begin{array}{l}
u_{1 x}(x, y, z, t)=K(z) \frac{\beta(z)}{\rho(z)} \frac{\partial}{\partial x} \int_{0}^{t} \int_{0}^{\vartheta} T(x, y, z, \tau) d \tau d \vartheta-K(z) \frac{\beta(z)}{\rho(z)} \frac{\partial}{\partial x} \int_{0}^{\infty} \int_{0}^{\vartheta} T(x, y, z, \tau) d \tau d \vartheta+u_{0 x} \\
u_{1 y}(x, y, z, t)=K(z) \frac{\beta(z)}{\rho(z)} \frac{\partial}{\partial y} \int_{0}^{t} \int_{0}^{\vartheta v} T(x, y, z, \tau) d \tau d \vartheta-K(z) \frac{\beta(z)}{\rho(z)} \frac{\partial}{\partial y} \int_{0}^{\infty} \int_{0}^{\vartheta} T(x, y, z, \tau) d \tau d \vartheta+u_{0 y} \\
u_{1 z}(x, y, z, t)=K(z) \frac{\beta(z)}{\rho(z)} \frac{\partial}{\partial z} \int_{0}^{t} \int_{0}^{\vartheta} T(x, y, z, \tau) d \tau d \vartheta-K(z) \frac{\beta(z)}{\rho(z)} \frac{\partial}{\partial z} \int_{0}^{\infty} \int_{0}^{\vartheta} T(x, y, z, \tau) d \tau d \vartheta+u_{0 z}
\end{array}\right.
$$

We obtain the second-order approximations of components of displacement vector could be calculated by replacement of the required components in the Eqs. (4) on the following sums $\alpha_{i}+$ $u_{i}(x, y, z, t)[12-14]$. This replacement leads to the following result

$$
\begin{aligned}
& \rho(z) \frac{\partial^{2} u_{2 x}(x, y, z, t)}{\partial t^{2}}=\left\{K(z)+\frac{5 E(z)}{6[1+\sigma(z)]}\right\} \frac{\partial^{2} u_{1 x}(x, y, z, t)}{\partial x^{2}}-\frac{\partial^{2} u_{1 y}(x, y, z, t)}{\partial x \partial y}\left\{\frac{E(z)}{3[1+\sigma(z)]}-\right. \\
& -K(z)\}+\frac{E(z)}{2[1+\sigma(z)]}\left[\frac{\partial^{2} u_{1 y}(x, y, z, t)}{\partial y^{2}}+\frac{\partial^{2} u_{1 z}(x, y, z, t)}{\partial z^{2}}\right]+\left\{K(z)+\frac{E(z)}{3[1+\sigma(z)]}\right\} \frac{\partial^{2} u_{1 z}(x, y, z, t)}{\partial x \partial z}- \\
& \times-K(z) \beta(z) \frac{\partial T(x, y, z, t)}{\partial x} \\
& \rho(z) \frac{\partial^{2} u_{2 y}(x, y, z, t)}{\partial t^{2}}=\frac{E(z)}{2[1+\sigma(z)]}\left[\frac{\partial^{2} u_{1 y}(x, y, z, t)}{\partial x^{2}}+\frac{\partial^{2} u_{1 x}(x, y, z, t)}{\partial x \partial y}\right]-K(z) \beta(z) \frac{\partial T(x, y, z, t)}{\partial y}+ \\
& +\frac{\partial^{2} u_{1 y}(x, y, z, t)}{\partial y^{2}}\left\{\frac{5 E(z)}{12[1+\sigma(z)]}+K(z)\right\}+\frac{\partial}{\partial z}\left\{\frac{E(z)}{2[1+\sigma(z)]}\left[\frac{\partial u_{1 y}(x, y, z, t)}{\partial z}+\frac{\partial u_{1 z}(x, y, z, t)}{\partial y}\right]\right\}+ \\
& +\left\{K(z)-\frac{E(z)}{6[1+\sigma(z)]}\right\} \frac{\partial^{2} u_{1 y}(x, y, z, t)}{\partial y \partial z}+K(z) \frac{\partial^{2} u_{1 y}(x, y, z, t)}{\partial x \partial y} \\
& \rho(z) \frac{\partial^{2} u_{2 z}(x, y, z, t)}{\partial t^{2}}=\frac{E(z)}{2}\left[\frac{\partial^{2} u_{1 z}(x, y, z, t)}{\partial x^{2}}+\frac{\partial^{2} u_{1 z}(x, y, z, t)}{\partial y^{2}}+\frac{\partial^{2} u_{1 x}(x, y, z, t)}{\partial x \partial z}+\frac{\partial^{2} u_{1 y}(x, y, z, t)}{\partial y \partial z}\right] \times \\
& \times \frac{1}{1+\sigma(z)}+\frac{\partial}{\partial z}\left\{K(z)\left[\frac{\partial u_{1 x}(x, y, z, t)}{\partial x}+\frac{\partial u_{1 y}(x, y, z, t)}{\partial y}+\frac{\partial u_{1 x}(x, y, z, t)}{\partial z}\right]\right\}+\frac{E(z)}{6[1+\sigma(z)]} \times \\
& \times \frac{\partial}{\partial z}\left\{\left[6 \frac{\partial u_{1 z}(x, y, z, t)}{\partial z}-\frac{\partial u_{1 x}(x, y, z, t)}{\partial x}-\frac{\partial u_{1 y}(x, y, z, t)}{\partial y}-\frac{\partial u_{1 z}(x, y, z, t)}{\partial z}\right]\right\}-\frac{\partial T(x, y, z, t)}{\partial z} \times \\
& \times K(z) \beta(z) .
\end{aligned}
$$

Integration of left and right sides of the above equations on time t leads to the following results

$$
\begin{aligned}
& u_{2 x}(x, y, z, t)=\frac{1}{\rho(z)}\left\{K(z)+\frac{5 E(z)}{6[1+\sigma(z)]}\right\} \frac{\partial^{2}}{\partial x^{2}} \int_{0}^{t \vartheta} \int_{0}^{\vartheta} u_{1 x}(x, y, z, \tau) d \tau d \vartheta+\left\{K(z)-\frac{E(z)}{3[1+\sigma(z)]}\right\} \times \\
& \times \frac{1}{\rho(z)} \frac{\partial^{2}}{\partial x \partial} \int_{0}^{1 \vartheta} \int_{0}^{1} u_{1 y}(x, y, z, \tau) d \tau d \vartheta+\left[\frac{\partial^{2}}{\partial y^{2}} \int_{0}^{1 \vartheta} \int_{0}^{1 y}(x, y, z, \tau) d \tau d \vartheta+\frac{\partial^{2}}{\partial z^{2}} \iint_{0}^{1 \vartheta} \int_{1 z}(x, y, z, \tau) d \tau d \vartheta\right] \times \\
& \times \frac{E(z)}{2 \rho(z)[1+\sigma(z)]}+\frac{1}{\rho(z)} \frac{\partial^{2}}{\partial x \partial z} \iint_{0}^{1 \vartheta} u_{1 z}(x, y, z, \tau) d \tau d \vartheta\left\{K(z)+\frac{E(z)}{3[1+\sigma(z)]}\right\}-K(z) \frac{\beta(z)}{\rho(z)} \times \\
& \times \frac{\partial}{\partial x} \int_{00}^{t \vartheta} T(x, y, z, \tau) d \tau d \vartheta-\frac{1}{\rho(z)}\left\{K(z)+\frac{5 E(z)}{6[1+\sigma(z)]}\right\} \frac{\partial^{2}}{\partial x^{2}} \int_{00}^{\infty} \int_{1 x} u_{1 x}(x, y, z, \tau) d \tau d \vartheta-\frac{1}{\rho(z)} \times \\
& \times\left\{K(z)-\frac{E(z)}{3[1+\sigma(z)]}\right\} \frac{\partial^{2}}{\partial x \partial y} \int_{0}^{\infty} \int_{0}^{\vartheta} u_{1 y}(x, y, z, \tau) d \tau d \vartheta-\left[\frac{\partial^{2}}{\partial y^{2}} \int_{0}^{\infty} \int_{0}^{\vartheta} u_{1 y}(x, y, z, \tau) d \tau d \vartheta+\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{\partial^{2}}{\partial z^{2}} \int_{0}^{\infty} \int_{0}^{\infty} u_{1 z}(x, y, z, \tau) d \tau d \vartheta\right] \frac{E(z)}{2 \rho(z)[1+\sigma(z)]}+K(z) \frac{\beta(z)}{\rho(z)} \frac{\partial}{\partial x} \int_{0}^{\infty} \int_{0}^{\infty} T(x, y, z, \tau) d \tau d \vartheta- \\
& -\frac{1}{\rho(z)} \frac{\partial^{2}}{\partial x \partial} \int_{0}^{\infty} \int_{0}^{\vartheta} u_{1 z}(x, y, z, \tau) d \tau d \vartheta\left\{K(z)+\frac{E(z)}{3[1+\sigma(z)]}\right\}+u_{0 x} \\
& u_{2 y}(x, y, z, t)=\frac{E(z)}{2 \rho(z)[1+\sigma(z)]}\left[\frac{\partial^{2}}{\partial x^{2}} \int_{0}^{t \vartheta} \int_{0}^{\vartheta} u_{1 x}(x, y, z, \tau) d \tau d \vartheta+\frac{\partial^{2}}{\partial x \partial} \int_{0}^{t \vartheta} \int_{0}^{\vartheta} u_{1 x}(x, y, z, \tau) d \tau d \vartheta\right]+ \\
& +\frac{K(z)}{\rho(z)} \frac{\partial^{2}}{\partial x \partial} \int_{0}^{t \vartheta} \int_{0} u_{1 y}(x, y, z, \tau) d \tau d \vartheta+\frac{1}{\rho(z)} \frac{\partial^{2}}{\partial y^{2}} \int_{00}^{t \vartheta} u_{1 x}(x, y, z, \tau) d \tau d \vartheta\left\{\frac{5 E(z)}{12[1+\sigma(z)]}+K(z)\right\}+ \\
& +\frac{1}{2 \rho(z)} \frac{\partial}{\partial z}\left\{\frac{E(z)}{1+\sigma(z)}\left[\frac{\partial}{\partial z} \int_{0}^{t \vartheta} \int_{0} u_{1 y}(x, y, z, \tau) d \tau d \vartheta+\frac{\partial}{\partial y} \int_{0}^{t} \int_{0}^{\theta} u_{1 z}(x, y, z, \tau) d \tau d \vartheta\right]\right\}-K(z) \frac{\beta(z)}{\rho(z)} \times \\
& \times \int_{0}^{t \vartheta} T(x, y, z, \tau) d \tau d \vartheta+\frac{1}{\rho(z)}\left\{K(z)-\frac{E(z)}{6[1+\sigma(z)]}\right\} \frac{\partial^{2}}{\partial y \partial z} \int_{0}^{t \vartheta} \int_{0}^{2} u_{1 y}(x, y, z, \tau) d \tau d \vartheta-\frac{E(z)}{2 \rho(z)} \times \\
& \times \frac{1}{1+\sigma(z)}\left\{\frac{\partial^{2}}{\partial x^{2}} \int_{0}^{\infty} \int_{0}^{\infty} u_{1 x}(x, y, z, \tau) d \tau d \vartheta+\frac{\partial^{2}}{\partial x \partial} \int_{0}^{\infty} \int_{0}^{\vartheta} u_{1 x}(x, y, z, \tau) d \tau d \vartheta\right\}-\int_{0}^{\infty} \int_{0} T(x, y, z, \tau) d \tau d \vartheta \times \\
& \times K(z) \frac{\beta(z)}{\rho(z)}-\frac{K(z)}{\rho(z)} \frac{\partial^{2}}{\partial x \partial} \int_{0}^{\infty} \int_{0}^{\vartheta} u_{1 y}(x, y, z, \tau) d \tau d \vartheta-\frac{1}{\rho(z)} \frac{\partial^{2}}{\partial y^{2}} \int_{0}^{\infty} \int_{0}^{\vartheta} u_{1 x}(x, y, z, \tau) d \tau d \vartheta\{K(z)+ \\
& \left.+\frac{5 E(z)}{12[1+\sigma(z)]}\right\}-\frac{1}{\rho(z)}\left\{K(z)-\frac{E(z)}{6[1+\sigma(z)]}\right\} \frac{\partial^{2}}{\partial y \partial z} \int_{0}^{\infty} \int_{0}^{\vartheta} u_{1 y}(x, y, z, \tau) d \tau d \vartheta+u_{0 y}-\frac{1}{2 \rho(z)} \times \\
& \times \frac{\partial}{\partial z}\left\{\frac{E(z)}{1+\sigma(z)}\left[\frac{\partial}{\partial z} \int_{0}^{\infty} \int_{0} u_{1 y}(x, y, z, \tau) d \tau d \vartheta+\frac{\partial}{\partial y} \int_{0}^{\infty} \int_{0}^{\vartheta} u_{1 z}(x, y, z, \tau) d \tau d \vartheta\right]\right\} \\
& u_{2 z}(x, y, z, t)=\left[\frac{\partial^{2}}{\partial x^{2}} \iint_{0}^{\infty} \int_{1 z}^{\infty} u_{1 z}(x, y, z, \tau) d \tau d \vartheta+\frac{\partial^{2}}{\partial y^{2}} \int_{0}^{\infty} \int_{0}^{\infty} u_{1 z}(x, y, z, \tau) d \tau d \vartheta+\frac{\partial^{2}}{\partial x \partial z} \int_{00}^{\infty} \int_{0}^{\infty} u_{1 x}(x, y, z, \tau) d \tau d \vartheta+\right. \\
& \left.+\frac{\partial^{2}}{\partial y \partial z} \int_{0}^{\infty} \int_{0}^{\infty} u_{1 y}(x, y, z, \tau) d \tau d \vartheta\right] \frac{E(z)}{2 \rho(z)[1+\sigma(z)]}+\frac{1}{\rho(z)} \frac{\partial}{\partial z}\left\{K (z) \left[\frac{\partial}{\partial x} \int_{0}^{\infty} \int_{0}^{\infty} u_{1 x}(x, y, z, \tau) d \tau d \vartheta+\right.\right. \\
& \left.+\frac{\partial^{2}}{\partial y \partial z} \int_{0}^{\infty} \int_{0}^{\infty} u_{1 y}(x, y, z, \tau) d \tau d \vartheta\right] \frac{E(z)}{2 \rho(z)[1+\sigma(z)]}+\frac{1}{\rho(z)} \frac{\partial}{\partial z}\left\{K (z) \left[\frac{\partial}{\partial x} \int_{0}^{\infty} \int_{0}^{\infty} u_{1 x}(x, y, z, \tau) d \tau d \vartheta+\right.\right. \\
& \left.\left.+\frac{\partial}{\partial y} \int_{0}^{\infty} \int_{1 x}^{\infty} u_{1 x}(x, y, z, \tau) d \tau d \vartheta+\frac{\partial}{\partial z} \int_{0}^{\infty} \int_{0}^{\infty} u_{1 x}(x, y, z, \tau) d \tau d \vartheta\right]\right\}+\frac{\partial}{\partial z}\left\{\left[6 \frac{\partial}{\partial z} \int_{0}^{\infty} \int_{0}^{\infty} u_{1 z}(x, y, z, \tau) d \tau d \vartheta-\right.\right. \\
& \left.\left.-\frac{\partial}{\partial x} \int_{0}^{\infty} \int_{0} u_{1 x}(x, y, z, \tau) d \tau d \vartheta-\frac{\partial}{\partial y} \int_{0}^{\infty} \int_{0}^{\vartheta} u_{1 y}(x, y, z, \tau) d \tau d \vartheta-\frac{\partial}{\partial z} \int_{0}^{\infty} \int_{0}^{\infty} u_{1 z}(x, y, z, \tau) d \tau d \vartheta\right] \frac{E(z)}{1+\sigma(z)}\right\} \times \\
& \times \frac{1}{6 \rho(z)}-K(z) \frac{\beta(z)}{\rho(z)} \frac{\partial}{\partial z} \int_{00}^{\infty \vartheta} T(x, y, z, \tau) d \tau d \vartheta+u_{0 z} .
\end{aligned}
$$

In this paper we calculate the second-order approximations of concentration of material of epitaxial layer and components of displacement vector by using the method of averaging of function corrections. Recently we obtain, that the second-order approximation of a considered solution is usually enough good approximation to make qualitative analysis and to obtain some quantitative results. We compare all analytical results by numerical simulations.

3. DISCUSSION

In this section we used relations obtained in the previous section for analysis influence of diffusion of material of the epitaxial layer of heterostructure from Fig. 1 into the substrate on relaxation of mismatch-induced stress. Increasing of temperature of growth stimulates acceleration of the diffusion. The diffusion leads to spreading of interface between layers of heterostructure. At the same time presents of smooth interface gives us possibility to decrease value of mismatchinduced stress in neighborhood of the interface between layers of heterostructure. The qualitatively same results have been experimentally obtained in [14]. The decreasing one can obtain due to more gradual changing of properties of the heterostructure in direction, which is perpendicular to the interface of the heterostructure. The Fig. 2 shows dependences of components of displacement vector on coordinate deep into the heterostructure for sharp and smooth interfaces. Probably spreading of interface, which one can obtain during high-temperature growth, is a reason of decreasing of mismatch-induced stress. Decreasing of sharpness of the interface could be partially compensated by nonlinearity of diffusion of material of epitaxial layer in the substrate for the large quantity of diffusing material. Several spatial distributions of material of epitaxial layer in the substrate are presented in Fig. 3.

Fig.2. Normalized dependences of components of displacement vector u_{z} on coordinate z for sharp (curve 1) and smooth (curve 2) interfaces between layers of heterostructure

4. Conclusions

In this paper we discuss possibility to decrease value of mismatch-induced stress due to increasing of temperature of growth. At the same time one can find decreasing of sharpness of interface between layers of heterostructure. It has been discussed possibility at least partial compensation of decreasing of the sharpness.

Acknowledgements

This work is supported by the contract 11.G34.31.0066 of the Russian Federation Government, grant of Scientific School of Russia, the agreement of August 27, 2013 № 02.B.49.21.0003 between The Ministry of education and science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod and educational fellowship for scientific research of Nizhny Novgorod State University of Architecture and Civil Engineering.

Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 2, No. 2, June 2015

REFERENCES

1. A.A. Andronov, N.T. Bagraev, L.E. Klyachkin, A.M. Malyarenko, S.V. Robozerov. Growth and electrophysical properties of heterostructures $\mathrm{Si} / \mathrm{Ge}$-on-insulator produced by ion implantation and subsequent hydrogen transferring. Semiconductors. Vol. 33 (1). P. 58-63 (1999).
2. M. Nichterwitz, R. Caballero, C.A. Kaufmann, H.-W. Schock, T. Unold. Generation-dependent charge carrier transport in $\mathrm{Cu}(\mathrm{In}, \mathrm{Ga}) \mathrm{Se}_{2} / \mathrm{CdS} / \mathrm{ZnO}$ thin-film solar-cells. J. Appl. Phys. Vol. 113 (16). P. 044515-044530 (2013).
3. J.Y. Fang, G.Y. Lee, J.I. Chyi, C.P. Hsu, Y.W. Kang, K.C. Fang, W.L. Kao, D.J. Yao, C.H. Hsu, Y.F. Huang, C.C. Chen, S.S. Li, J.A. Yeh, F. Ren, Y.L. Wang. Viscosity-dependent drain current noise of AlGaN/GaN high electron mobility transistor in polar liquids. J. Appl. Phys. Vol. 114 (20). P. 204503-204507 (2013).
4. S.Yu. Davydov. On the effect of SiC substrate spontaneous polarization on buffer layer and quasifree standing graphene. Semiconductors. Vol. 46 (9). P. 1209-1212 (2012).
5. M.G. Mynbaeva, A.A. Sitnikova, K.D. Mynbaev. Photoelectrical properties of porous $\mathrm{GaN} / \mathrm{SiC}$ structures. Semiconductors. Vol. 45 (10). P. 1369-1372 (2013).
6. I.P. Stepanenko. Basis of Microelectronics (Soviet Radio, Moscow, 1980).
7. Z.Yu. Gotra, Technology of microelectronic devices (Radio and communication, Moscow, 1991).
8. N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication, Moscow, 1991).
9. V.I. Lachin, N.S. Savelov. Electronics. Rostov-on-Don: Phoenix, 2001.
10. Y.W. Zhang, A.F. Bower. Numerical simulations of island formation in a coherent strained epitaxial thin film system. Journal of the Mechanics and Physics of Solids. Vol. 47 (11). P. 2273-2297 (1999).
11. L.D. Landau, E.M. Lefshits. Theoretical physics. 7 (Theory of elasticity) (Physmatlit, Moscow, 2001, in Russian).
12. Yu.D. Sokolov. About the definition of dynamic forces in the mine lifting. Applied Mechanics. Vol. 1 (1). P. 23-35 (1955).
13. E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture $p-n$-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of distributions of dopants. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).
14. E.L. Pankratov, E.A. Bulaeva. On prognozisys of manufacturing double-base heterotransistor and optimization of technological process. Advances in Materials Science and Engineering: An International Journal (MSEJ). Vol. 2 (1). P. 1-12 (2015).

Authors:

Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University: from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Radiophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radiophysics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Microstructures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgorod State University of Architecture and Civil Engineering. Now E.L. Pankratov is in his Full Doctor course in Radiophysical Department of Nizhny Novgorod State University. He has 110 published papers in area of his researches.

Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school "Center for gifted children". From 2009 she is a student of Nizhny Novgorod State University of Architecture and Civil Engineering (spatiality "Assessment and management of real estate"). At the same time she is a student of courses "Translator in the field of professional communication" and "Design (interior art)" in the University. E.A. Bulaeva was a contributor of grant of President of Russia (grant № MK548.2010 .2). She has 65 published papers in area of her researches.

