PREVALENCE OF DEPRESSION AND ITS ASSOCIATED FACTORS IN ADULTS WITH DIABETES MELLITUS: A CROSS-SECTIONAL STUDY IN A TERTIARY CARE CENTRE

Shweta Paulraj1, Senthil Rajasekaran2 and Anil C Mathew3

1,2 Department of Endocrinology, 3Department of Community Medicine, PSG Institute of Medical Sciences and Research, Coimbatore, India

ABSTRACT

The prevalence of Diabetes Mellitus has been rising steadily owing to several factors such as sedentary lifestyle, obesity and an aging population. The prevalence of diabetes is predicted to double globally from 171 million in 2000 to 366 million in 2030 with a maximum increase in India with up to 79.4 million individuals in India. Depression occurs frequently with diabetes but there are not many studies in India to estimate its prevalence and associated factors. This study was done with the aim of estimating the prevalence of depression among diabetes patients using the validated Patient Health Questionnaire-9 and also its associated factors. A cross sectional study was done on 100 consecutive patients with Diabetes Mellitus (both type 1&2) attending the Outpatient Endocrinology clinic from September 2015 to November 2015. The Patient Health Questionnaire diagnostic algorithm was used to identify major depression. The covariates studied were age, gender, duration of diabetes, presence of hypertension and glycaemic control. Chi-square test was done to find the association of demographic and clinical characteristics of depression. Multiple logistic regresional analysis was done to identify the statistically significant variables. The prevalence of major depression was found to be 35%. People with hypertension were found to have a significantly higher prevalence of depression (adjusted odds ratio=3.02, 95% CI: 1.17 to 7.7, P=0.022). Also, employed people were at a lower risk for depression when compared to the unemployed /retired population (adjusted odds ratio=0.319, 95% CI: 0.11-0.85, P=0.023).Interestingly age, duration of diabetes and glycaemic control were not significantly associated with depression. Over one-third of the patients with diabetes mellitus had depressive symptoms. The prevalence varied by demographic and clinical characteristics.

KEYWORDS

Diabetes, Depression, Patient Health Questionnaire-9, Hypertension.

1. INTRODUCTION

The prevalence of Diabetes Mellitus has been rising steadily owing to several factors such as sedentary lifestyle, obesity and an aging population. The prevalence of diabetes is predicted to double globally from 171 million in 2000 to 366 million in 2030 with a maximum increase in India with up to 79.4 million individuals in India.[1]

Depression occurs frequently with diabetes and has been found to be associated bidirectionally with diabetes mellitus.[2,3] However, it was observed that the reported prevalence in the studies varied tremendously in terms of definition, study design, source of subjects, time frame and measurement methods.[4-6] Moreover, with the predicted rise of diabetes in India, and risk factors...
for depression such as low socioeconomic status, financial constraints being rampant here it is quintessential to establish regional studies as a guideline to aid in a holistic patient approach.\[7\]

Apart from this, most of these studies used self-administered questionnaires which cannot directly establish a diagnosis of depression.\[4,5,6,8\] Standard interviews, such as the Structured Clinical Interview for DSM Disorders (SCID)\[9\] and the Composite International Diagnostic Interview (CIDI)\[10\] can yield a clinical diagnosis according to the Statistical Manual of Psychiatric Disorders, 4th edition (DSM-IV)\[11\]; however, lengthy assessments and high costs preclude the extensive use of such structured diagnostic interviews in large population-based surveys.

The Patient Health Questionnaire (PHQ) can establish provisional diagnoses of major and minor depression as well as evaluate the severity of depressive symptoms.\[12\]; The PHQ-9 diagnosis of major depression yielded acceptable sensitivity and specificity. The present study aims to estimate the prevalence of depression among diabetes patients using the validated Patient Health Questionnaire-9 and its associated factors.

The variables taken into consideration for association with depression in this region include age, gender, duration of diabetes, glycaemic index and presence of hypertension. This stems from previous studies which show significant correlations between the above variables and depression\[6,13,14\]

2. MATERIALS AND METHODS:

This study is a cross-sectional study on 100 consecutive patients presenting at a tertiary care centre, aged >18yrs diagnosed with Type 2 diabetes mellitus by a certified Endocrinologist. The study was carried out after obtaining institutional ethics committee clearance. Written informed consent was obtained from the study participants and the PHQ-9 questionnaires were distributed. Those subjects that couldn’t read were assisted in filling the questionnaires by an interpreter (Figure 1). During multivariate analysis we have combined the scores 0-9 (none, minimal and mild depression categories) as “no major depression” and scores of 10-27 (moderate, moderately severe and severe categories) as “major depression”.\[15,16\]

Patients with complications from diabetes (retinopathy, neuropathy, nephropathy), previous history of mental illness, previous illnesses known to increase a risk for depression (CAD, CVA), and patients already on antidepressants for other symptoms were excluded from the study.

The demographic variables considered were age, gender, duration of diabetes, glycaemic index and presence of hypertension. Age was measured in completed years. Duration of diabetes and glycaemic control were taken from the patients’ case records. Hypertension was defined in the study as systolic BP level of \(\geq 140\)mmHg and diastolic BP of \(\geq 90\)mmHg, or current treatment for hypertension with prescription medication.\[17,18\]

Data were analysed using SPSS(19). Chi-square test was done to find the association of demographic and clinical characteristics of depression. Further, multiple logistic regresional analysis was done to identify the statistically significant variables. \(P\) value of \(<0.05\) was considered as statistically significant
Among the 100 patients studied, 35 were found to have major depression (Figure 2). In the univariate analysis, those who were having hypertension and those who were unemployed were significantly associated with depression ($P<0.05$). In the multiple regression analysis (Table I), people with hypertension were found to have a significantly higher prevalence of depression (adjusted odds ratio $=3.02, 95\%$ Confidence Interval $=1.17$ to $7.7, P=0.022$) (Figure 3). Also, employed people were at a lower risk for depression when compared to the unemployed / retired population (adjusted odds ratio $=0.319, 95\%$ Confidence Interval $=0.11-0.85, P=0.023$) (Figure 4) that bar graph has nothing written on x axis. Interestingly, age, duration of diabetes and glycaemic control were not significantly associated with depression.
Figure 2. Percentage of patients with and without depression among the study group.

Figure 3. Comparison of the prevalence of Depression in patients with and without Hypertension
Figure 4. Prevalence of depression among employed and unemployed study participants

Table 1. Regression analysis of the associated factors of depression

<table>
<thead>
<tr>
<th>Variable</th>
<th>Number studied</th>
<th>Percentages with depression</th>
<th>Adjusted odds ratio</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><40 years</td>
<td>11</td>
<td>36.4</td>
<td>1</td>
<td>0.40(0.08-1.91)</td>
</tr>
<tr>
<td>More than 40 years</td>
<td>89</td>
<td>34.8</td>
<td>1</td>
<td>0.31(0.11-0.85)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>51</td>
<td>27.5</td>
<td>1</td>
<td>1.32 (0.51-3.41)</td>
</tr>
<tr>
<td>Female</td>
<td>49</td>
<td>42.9</td>
<td>1</td>
<td>0.31(0.11-0.85)</td>
</tr>
<tr>
<td>Duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 5 years</td>
<td>31</td>
<td>32.3</td>
<td>1</td>
<td>0.31(0.11-0.85)</td>
</tr>
<tr>
<td>More than 5 years</td>
<td>69</td>
<td>36.2</td>
<td>1</td>
<td>0.31(0.11-0.85)</td>
</tr>
<tr>
<td>Glycemic control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><7 Glycemic control</td>
<td>45</td>
<td>26.7</td>
<td>1</td>
<td>2.34(0.91-6.04)</td>
</tr>
<tr>
<td>>7 Glycemic control</td>
<td>55</td>
<td>41.8</td>
<td>1</td>
<td>2.34(0.91-6.04)</td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed/Retired</td>
<td>48</td>
<td>50.0</td>
<td>1</td>
<td>0.31(0.11-0.85)</td>
</tr>
<tr>
<td>Employed</td>
<td>52</td>
<td>21.2</td>
<td>1</td>
<td>0.31(0.11-0.85)</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>59</td>
<td>23.7</td>
<td>1</td>
<td>3.02(1.17-7.77)</td>
</tr>
<tr>
<td>Yes</td>
<td>41</td>
<td>51.2</td>
<td>1</td>
<td>3.02(1.17-7.77)</td>
</tr>
</tbody>
</table>

4. DISCUSSION:

In the present study the prevalence of depression among patients with diabetes mellitus was found to be 35% which was slightly smaller than the prevalence in a study conducted by Joseph N et al., in an adjoining area that reported a prevalence of 45.3%.\(^{[13]}\) It was also found to be more than twice as common as depression in the general population of our region.\(^{[7,19]}\)

This leads us to ask the more imposing question, “Why is depression more prevalent in people with diabetes mellitus?” The study by Talbot F et al., suggested that the extent to which diabetes intrudes in life, rather than diabetic complications per se or personal control, is a key factor in
relation to depressive symptomatology in individuals with diabetes.\cite{20} In an animal model, Wang and colleagues demonstrated that experimentally induced type 1 diabetes impairs hippocampal neurogenesis, which may contribute to diabetes-related depression.\cite{21} Another study demonstrated decreased plasma brain-derived neurotrophic factor (BDNF) in patients with type 2 diabetes compared to controls, which has been hypothesized to play a role in learning and memory and has also been implicated in the pathogenesis of depression.\cite{22}

Among the risk factors, depression was found to be significantly associated with hypertension. This is in line with the findings of Saeed AK et al., where the prevalence of depression in hypertensive people with diabetes mellitus was 57% whereas in people with diabetes alone it was 40%. (P is less than 0.05).\cite{23} There are also other studies which showed that depression is common in patients with uncontrolled hypertension irrespective of presence of diabetes and may interfere with blood pressure control.\cite{24,25} Studies have shown that plasma noradrenaline, as an indirect marker of sympathetic tone, was elevated in patients with essential hypertension.\cite{26} There is also reported evidence showing abnormal autonomic nervous system function in depression, specifically regarding increased sympathetic activity and poor vagal control. Several studies have examined cerebrospinal fluid (CSF), plasma or urinary levels of norepinephrine (NE) and its major central nervous system metabolite, 3-methoxy-4-hydroxyphenylglycol (MHPG). Plasma NE and/or MHPG levels have been reported to be elevated in depressive patients.\cite{27,28} Thus, the existing relationship between hypertension and depression by itself could have contributed to the statistically significant presence of depression among hypertensive people with diabetes mellitus.

Also, we found that depression among diabetes was significantly associated with employment status with a higher prevalence in the unemployed population. This is in line with other studies which showed a higher prevalence of depression in the unemployed population.\cite{13,29,30} The unemployed individuals lack sociological functions such as time structure, status and identity, social contacts, participation in collective purposes and regular activity which could predispose them to depression.\cite{30}

A methodological innovation of our study was the application of the PHQ-9\cite{12} which was developed for clinical use, scoring each of the DSM IV criteria on grades from 0-3 based on the frequency of the symptoms\cite{31} Scores of 20-27, 15-19, 10-14, 5-9 and 1-4 represent severe, moderately severe, moderate, mild and minimal depression respectively.\cite{11}

Our results indicate that a substantial number of people with diabetes are at an increased risk of having major depression, and those who care for patients with diabetes should routinely screen them for major depression using the PHQ-9 or other such instruments. Among the umpteen methods to screen for depression, the PHQ-9 is a promising tool with its ease of administration, convenient scoring system, brief and simple questions. Most importantly, the use of PHQ-9 can serve in comparisons of depressive symptomatology on an international basis given its worldwide validation.\cite{32,33}

This study has some limitations. The study was conducted in a tertiary care hospital, so a possible selection bias cannot be excluded. This could be because the patients coming to the tertiary care hospital belong to the relatively higher socioeconomic status of the community. A large sample community based study could throw more light on this relationship. Since this study is a cross-sectional study, temporal relationship between depression and diabetes cannot be determined.
5. CONCLUSIONS

Over one-third (35%) of the patients with diabetes mellitus had depressive symptoms. It is widely associated with unemployment and co-existent hypertension in this population.

This emphasizes that the mind/body dualism is a false dichotomy and there is an increasing need to integrate mental health services in these patients. We recommend routine screening of diabetic patients with PHQ-9 to identify those at risk as it is a quick and easy tool to identify depression and refer patients appropriately for further counselling and support.

In addition, the issue of depression in association with socioeconomic factors such as unemployment is to be addressed by the health policy to aim for an overall betterment of the welfare of the people in this region.

ACKNOWLEDGEMENTS

My sincere thanks to my Guides, Dr. Senthil Rajasekaran and Dr. Anil Mathew stood by my side and helped me carry out this research perfectly at each and every step. I would also like to thank the Department of Endocrinology and Community Medicine, and all the supporting staff for their help. Finally I wish to thank the study participants for sparing their valuable time and for providing the information which enabled us to complete our research.

REFERENCES

Authors

1. Shweta Paulraj, Alumnus, PSG Institute of Medical Sciences and Research, Coimbatore
2. Senthil Rajasekaran, Professor and Head, Department of Endocrinology, PSG Institute of Medical Sciences and Research, Coimbatore
3. Anil C Mathew, Professor, Department of Endocrinology, PSG Institute of Medical Sciences and Research, Coimbatore