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ABSTRACT 
 
In this paper an analytical approach for estimation of maximal continuance of manufacturing of integrated 

circuit elements by dopant diffusion and ion implantation has been introduced. We analyzed influence of 
parameters of considered technological processes on the value of it's maximal continuance. 
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1. INTRODUCTION 
 

One of the intensively solved problems for production of solid-state electronics devices is 

increasing of the integration rate of elements of integrated circuit (p-n- junctions; field-effect and 

bipolar transistors; ...), as well as increasing of their performance [1-8]. Different methods are 
using for manufacture of elements of integrated circuits. Some of them are ion and diffusion 

types of doping of required sections of electronic materials, epitaxial growth of multilayer 

structures, fusion of materials [9-17]. Main aim of the present paper is estimation of maximal 
continuance of ion and diffusion types of doping. The accompanying of the present paper is 

development of analytical approach for analysis of the considered continuance. 

 

2. METHOD OF SOLUTION 
 
In this section we determine spatio-temporal distributions of concentrations of infused and 

implanted dopants. To determine these distributions we calculate appropriate solutions of the 

second Fick's law [1,3,18,19] 
 

   










x

txC
D

xt

txC
C











 ,,
           (1) 

 

Boundary and initial conditions for the equations are for finite source of dopant 
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for infinite source of dopant 

C (0,t)=C0, 
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The function C(x,y,z,t) describes the spatio-temporal distribution of concentration of dopant; T is 

the temperature of annealing; DС is the dopant diffusion coefficient. Value of dopant diffusion 

coefficient could be changed with changing materials of heterostructure, with changing 

temperature of materials (including annealing), with changing concentrations of dopant and 
radiation defects. We approximate dependences of dopant diffusion coefficient on parameters by 

the following relation with account results in Refs. [19-21] 
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Here the function DL (x,T) describes the spatial (in heterostructure) and temperature (due to 

Arrhenius law) dependences of diffusion coefficient of dopant. The function P (x,T) describes the 

limit of solubility of dopant. Parameter  [1,3] describes average quantity of charged defects 

interacted with atom of dopant [19]. The function V (x,t) describes the spatio-temporal 

distribution of concentration of radiation vacancies with equilibrium distribution V*. The 
considered concentrational dependence of dopant diffusion coefficient has been described in 

details in [19]. It should be noted, that using diffusion type of doping did not generation radiation 

defects. In this situation 1= 2= 0. We determine spatio-temporal distributions of concentrations 

of radiation defects by solving the following system of equations [20,21] 
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Boundary and initial conditions for these equations are 
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Here  =I,V. The function I (x,t) describes the spatio-temporal distribution of concentration of 

radiation interstitials with equilibrium distribution I*; D(x,T) are the diffusion coefficients of 

point radiation defects; terms V2(x,t) and I2(x,t) correspond to generation divacancies and 

diinterstitials; kI,V(x,T) is the parameter of recombination of point radiation defects; kI,I(x,T) and 

kV,V(x,T) are the parameters of generation of simplest complexes of point radiation defects. 

Further we determine distributions in space and time of concentrations of divacancies V(x,t) and 

diinterstitials I(x,t) by solving the following system of equations [20,21] 
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Boundary and initial conditions for these equations are 
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Here D(x,T) are the diffusion coefficients of the above complexes of radiation defects; kI(x,T) 

and kV(x,T) are the parameters of decay of these complexes. 
 

We calculate distributions of concentrations of point radiation defects in space and time by 

recently elaborated approach [22]. The approach based on transformation of approximations of 

diffusion coefficients in the following form: D(x,T)=D0[1+ g(x, T)], where D0 are the 

average values of diffusion coefficients, 0<1, |g(x,T)|1. We also used analogous 

transformation of approximations of parameters of recombination of point defects and parameters 

of generation of their complexes: kI,V(x,T)=k0I,V [1+I,VgI,V(x,T)], kI,I(x,T)=k0I,I[1+I,I gI,I(x,T)] and 

kV,V(x,T)=k0V,V[1+V,V gV,V(x,T)], where k01,2 are the their average values, 0I,V<1, 0I,I<1, 

0V,V<1, | gI,V(x,T)|1, | gI,I(x, T)|1, |gV,V(x,T)|1. Let us introduce the following dimensionless 

variables:     *,,
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 . The introduction leads to transformation of Eqs. (4) and 

conditions (5) to the following form 

 

 
    

           

 
    

           























































































,
~

,1,
~

,
~

,1

,
~

,1
,

~

,
~

,1,
~

,
~

,1

,
~

,1
,

~

2

,,,,

00

0

2

,,,,

00

0

VTgVITg

V
Tg

DD

DV

ITgVITg

I
Tg

DD

DI

VVVVVVIVI

VV

VI

V

IIIIIVIVI

II

VI

I

      (8) 

 
0

,~

0










, 

 
0

,~

1










,  

 
*

,
,~






f
 .        (9) 

 

We determine solutions of Eqs. (8) with conditions (9) framework recently introduced approach 
[22], i.e. as the power series 
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Substitution of the series (10) into Eqs.(8) and conditions (9) gives us possibility to obtain 

equations for initial-order approximations of concentration of point defects   ,~
000  and 

corrections for them   ,~
ijk , i 1, j 1, k 1. The equations are presented in the Appendix. 
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Solutions of the equations could be obtained by standard Fourier approach [23,24]. The solutions 
are presented in the Appendix. 

 

Now we calculate distributions of concentrations of simplest complexes of point radiation defects 

in space and time. To determine the distributions we transform approximations of diffusion 

coefficients in the following form: D(x,T)=D0[1+ g(x,T)], where D0 are the average 
values of diffusion coefficients. In this situation the Eqs.(6) could be written as 
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Farther we determine solutions of above equations as the following power series 
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Now we used the series (11) into Eqs.(6) and appropriate boundary and initial conditions. The 

using gives the possibility to obtain equations for initial-order approximations of concentrations 

of complexes of defects 0(x,t), corrections for them i(x,t) (for them i 1) and boundary and 

initial conditions for them. We remove equations and conditions to the Appendix. Solutions of 
the equations have been calculated by standard approaches [23,24] and presented in the 

Appendix. 

 

Now we calculate distribution of concentration of dopant in space and time by using the 
approach, which was used for analysis of radiation defects. To use the approach we consider 

following transformation of approximation of dopant diffusion coefficient: DL(x,T)=D0L[1+ 

LgL(x,T)], where D0L is the average value of dopant diffusion coefficient, 0L< 1, |gL(x,T)|1. 

Farther we consider solution of Eq. (1) as the following series: 
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Using the relation into Eq. (1) and conditions (2) leads to obtaining equations for the functions 

Cij(x,t) (i 1, j 1), boundary and initial conditions for them. The equations are presented in the 
Appendix. Solutions of the equations have been calculated by standard approaches (see, for 

example, [23,24]). The solutions are presented in the Appendix. We analyzed distributions of 

concentrations of dopant and radiation defects in space and time analytically by using the second-

order approximations on all parameters, which have been used in appropriate series. Usually the 
second-order approximations are enough good approximations to make qualitative analysis and to 

obtain quantitative results. All analytical results have been checked by numerical simulation. 

 
Let us to use recently introduce criterion to estimate maximal value of continuance of 

technological process [25]. In the framework of the criterion let us approximate changing of 

considered concentrations in time by the following step-wise function (see Figs. 1-4) 

 

 (x,t) = a0+a1[1(t)-1(t-)],     (12) 
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where 1(t) is the single step-wise function [26]. Not yet known parameters a0, a1 and  could 

have different values in different points of the considered material. Values of these parameters 

were determined were determined by minimization of the following the mean-squared error 
 

     
Nt

dttxtxCU
0

2,,  ,     (14) 

 

where tN is the observation time of transition process. Minimization of the mean- square error 
(14) gives a possibility to obtain the following relations for calculation of the considered 

parameters 
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C (x,)=a0+0.5a1.         (15c) 

 

The criterion is optimal. However the approach did not leads to obtaining analytical relations for 

calculation of the considered maximal value of continuance of technological process. To obtain 
analytical relations for the considered relations it is attracted an interest asymptotically optimal 

criteria. To obtain transition to the criteria one shall consider the following limiting case tN. 

In this case one can obtain the following relations: a0 = C(x,) and a1= C(x,0)-C(x,). Before 
consideration of the following limiting transition one shall the transform relation (15a) to the 

following form 
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Further obtaining of time of step-wise changing of approximation function (13) under condition 

of the limiting case tN one can obtain the following criterion to estimate time scales, which 

known as rectangle with equal square 
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Monotonous in time concentrations of dopant (see Figs. 1 and 2) could be approximated by the 

following functions 

 

C(x,t) =  [1-exp(-t/)], C(x,t) =  exp(-t/).      (17) 

 
Substitution of the above relations into the relation (16) at fixed value of observation time of the 

diffusion process tN gives a possibility to obtain the following relation for the considered time 

 

 =   [1-exp (-tN/)]. 
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Fig. 1. Monotonic increasing of concentration of dopant (curve 1); optimal approximation of transition 

process, which was obtained by minimization of mean-squared error (14) (curve 2); asymptotically optimal 

approximation of transition process (curve 3) 
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Fig. 2. Monotonic decreasing of concentration of dopant (curve 1); optimal approximation of transition 

process, which was obtained by minimization of mean-squared error (14) (curve 2); asymptotically optimal 

approximation of transition process (curve 3) 

 
 

Consideration limiting case tN leads to equality of single time scale of monotonous variation 

in time of dopant concentration and time scale, which was determined by relation (16). It should 

be noted, that relation (15c) at the limiting case tN  takes the form of another asymptotically 

optimal criterion. In the framework the second asymptotically optimal criterion maximal value 
maximal value of diffusion doping could be estimated as time of changed of the considered 

concentration in two times, i.e. 

 

C (x,)=[C(x,0) +C(x,)]/2.      (18) 

 

 
 

Fig. 3. Non-monotonic decreasing of concentration of dopant (curve 1); optimal approximation of 

transition process, which was obtained by minimization of mean-squared error (14) (curve 2); 

asymptotically optimal approximation of transition process (curve 3) 

 



Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 

7 

t

C
(x

,t
)

C(x,)
a1(x)

a0(x)

tNopt(x)

C(x,0)

1

2

 
 

Fig. 4. Non-monotonic increasing of concentration of dopant (curve 1); optimal approximation of transition 

process, which was obtained by minimization of mean-squared error (14) (curve 2); asymptotically optimal 

approximation of transition process (curve 3) 

 
 

However the first asymptotically optimal criterion (15) is nonlinear. Nonlinear criterion leads to 

obtaining smaller quantity of analytical relations for the considered maximal value of 

technological processes in comparison with criterion (16). In this situation we will use criterion 
(16) in future. However the criterion (16) has own disadvantage: the criterion could be used for 

monotonous in time concentrations of dopant. For non-monotonous in time concentrations of 

dopant the criterion (16) leads to underestimated values of the considered time. In this situation 

the considered time could takes negative values. It is attracted an interest maximal value of the 
considered time will be achieves, when initial distribution of concentration of infused dopant is 

presents near one boundary of the considered structure (i.e. f (x)= (x)) and point of observation 

of this concentration is presented on other boundary of the considered structure (i.e. x = L), which 

should be doped. If the observation time on diffusion doping tN is large in comparison with 

limiting time of technological process , than transitions processes are absent at times t >. 

 

3. DISCUSSION 
 

In this section we analyzed limiting continuance of technological process for different profiles of 

diffusion coefficients without any variations in time (for example, annealing temperature is 

constant). Wide using have different multilayer structures. In this situation we will consider 
several normalized profiles of dopant diffusion coefficient g (x), which are presented on Fig. 5. 

Analysis of limiting continuance of technological process shows, that in the case of infusion of 

dopant from finite source maximal variation of the considered continuance could be find in 
symmetrical structure with respect to it's middle (see Fig. 6). In the case of infusion of dopant 

from infinite source maximal variation of the considered continuance could be find in 

asymmetrical structure with respect to it's middle (see Fig. 7). Multilayer structures, which were 
presented on Figs. 6a and 7a, correspond to maximal increasing of the considered limiting 

continuance of technological processes (at fixed average value of dopant diffusion coefficient 

D0). Multilayer structures, which were presented on Figs. 6b and 7b, correspond to maximal 

decreasing of the considered limiting continuance of technological processes (at fixed average 
value of dopant diffusion coefficient D0). 
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Fig. 5. Normalized profiles of dopant diffusion coefficients 

 

We analyzed dependences of the considered limiting continuance on thicknesses of layers of 

multilayer structures. Variation of thicknesses of layers of multilayer structures not gives a 
possibility to find profiles of dopant diffusion coefficient, which correspond to larger influence 

on the considered continuance, in comparison with profiles, which were presented on Figs. 6 and 

7. Increasing of quantity of layers of the considered multilayer structures leads to decreasing of 

influence of variation of dopant diffusion coefficient on the limiting continuance of technological 

process. Figs. 8 show dependences of the considered continuance on the value of parameter  for 
profiles of dopant diffusion coefficient, which were presented on Figs. 6 and 7. These figures 

show, that the considered continuance could be decreased on several percents and increased on 

several orders in comparison with continuance 0 for averaged value of dopant diffusion 

coefficient D0. The continuance 0 for averaged value of dopant diffusion coefficient D0 is equal 

to 0=L2/6D0 for finite source of dopant and 0=L2/2D0 for infinite source of dopant. 
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Fig. 6a. Normalized profiles of dopant diffusion coefficient, which correspond to maximal increasing of 

the limiting continuance of diffusion doping from finite source of dopant 
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Fig. 6b. Normalized profiles of dopant diffusion coefficient, which correspond to maximal decreasing of 
the limiting continuance of diffusion doping from finite source of dopant 
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Fig. 7a. Normalized profiles of dopant diffusion coefficient, which correspond to maximal increasing of 

the limiting continuance of diffusion doping from infinite source of dopant 
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Fig. 7b. Normalized profiles of dopant diffusion coefficient, which correspond to maximal decreasing of 

the limiting continuance of diffusion doping from infinite source of dopant 
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Fig. 8a. Dependences of limiting continuance of diffusion doping for finite source of dopant on value of 

parameter . Curve 1 corresponds to profile of dopant diffusion coefficient with decreased limiting 

continuance of technological process (see Fig. 6b). Curve 2 corresponds to profile of dopant diffusion 

coefficient with increased limiting continuance of technological process (see Fig. 6a) 

 

 
 

Fig. 8b. Dependences of limiting continuance of diffusion doping for infinite source of dopant on value of 

parameter . Curve 1 corresponds to profile of dopant diffusion coefficient with decreased limiting 

continuance of technological process (see Fig. 7b). Curve 2 corresponds to profile of dopant diffusion 

coefficient with increased limiting continuance of technological process (see Fig. 7a) 
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Fig. 9. Profile of dopant diffusion coefficient, which corresponds to maximal increasing of limiting 

continuance of ion doping. Profile of dopant diffusion coefficient, which corresponds to maximal 

decreasing of limiting continuance of ion doping, has the same difference with the above profile as for 

profiles 6b и 6a 
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Now let us consider influence of temporal variations of dopant diffusion coefficient on value of 
limiting continuance of technological process in homogenous material. The considered situation 

could be consider, for example, for nonstationary annealing of dopant and/or radiation defects, 

which are presents in homogenous material. In this case (as for multilayer structure) increasing of 

the considered limiting continuance is essentially smaller, than decreasing one at fixed value of 
averaged diffusion coefficient. The same conclusion could be obtained during analysis of joint 

changing of dopant diffusion coefficient in space and time. 

 
Analogous conclusions about influence of variations of dopant diffusion coefficient on limiting 

continuance of technological process could be obtained for ion type of doping. At the same time 

one can find changing of thicknesses of layers of multilayer structures (see Fig. 9). This changing 
taking into account presents of maximal value of concentration of dopant in depth of the 

multilayer structure, but not on it's external boundary as for diffusion doping. Also qualitatively 

similar influence of spatial and temporal variations of dopant diffusion coefficients of radiation 

defects and accounted other parameters (parameters of recombination of point radiation defects; 
parameters of generation of complexes of point defects; parameters of decay of complexes of 

radiation defects) on limiting value of continuance of annealing time. 

 

4. CONCLUSIONS 
 

In this paper we introduce an analytical approach to estimate limiting value of continuance of 

technological process during doping (doping by diffusion; ion doping) of materials to 

manufacture elements of integrated circuits. We analyzed influence of parameters on value of the 
considered limiting continuance. 
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APPENDIX 
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Equations for functions i(x,t), i 0, boundary and initial conditions takes the form 
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