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ABSTRACT 
 

In this paper we consider an approach of changing the temperature of liquids and gases in the pipeline by 
local heating and cooling. We introduce a model of heat transfer with account forced convection. Also we 

introduce an analytical approach for prognosis of heat transfer. 
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1. INTRODUCTION 
 

In a several technical equipment it is necessary to conduct heat sink and stabilization of 

temperature of the liquid or gaseous heat carrier. Framework this paper for the transport of heat 
carrier, we consider a cylindrical transportation system (a frequent example of such a system is a 

pipe) with a circular section (see Fig. 1). This pipe has a metal section with known dimension, 

having a porous metal inside. This section maintains a stable temperature (for example, the 

section in question is in a stream of water with a given temperature). The main aim of this paper 
is estimation of distribution of temperature of the heat carrier. The accompanying aim of this 

work are the creation of a model that allows an assessment of a given temperature field and the 

formation of an analytical approach to analyze of the considered distribution of temperature. 
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Fig. 1. Structure of the considered pipe is L (axial coordinate z[0,L]) with radius R. This tube has a 

section z[a,b] 
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2. METHOD OF SOLUTION 
 
To solve our aims we calculate distribution of the considered temperature in space and time. The 

required distribution of temperature has been calculated by solving of the following boundary 

value problem [1] 
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where r, , z and t are the current cylindrical coordinates and time (r[0,R], [0,2], z[0,L]); 

function T (r,,z,t) is the distribution of temperature in space and time; c is the system heat 

capacity; C is the concentration of the transported substance in the pipeline;  is the coefficient of 

thermal conductivity; p (r,z,t) is the density of the power generated in the considered system; v


 

is the velocity of heat carrier described by the Navier-Stokes equation 
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where P is the pressure in pipe;  is the kinematics viscosity. Boundary and initial conditions 
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where   =5,6710-8 Wm-2K-4; the boundary conditions on the metal section could be transferred 

to a separate term in the form of power density to the equation (1) p (r,z,t)/c =Tb2sign ([z-b+a]/L) 

((r-R)/L)/, where  is the time scale for achievement of stationary temperature distribution. This 

time scale has been calculated by using previously introduced approach [2] and takes the 

following value   =/c R2L. In a cylindrical coordinate system, the equations for the velocity 

projections takes the form 
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Due to the symmetry of the system, to describe the velocity field, it suffices to consider only the 

axial velocity component, i.e. vz. To solve the equation (4c) we transform it to the following 
integral form 

 

         




    tVudtuvuzdud
C

P
duduvzV

L
tzvtzv

z

z

t zt z

zzz 0
00 00 0

22

02
,,

1
,,   

     




   







 LVzdud

CL

P

L

z
duduv

L

z
udtuv

L

u
zdzv

t Lt L

z

L

z

t

z 0
0 00 0

2

00

,,1,  .(4d) 

 
To solve the Eq. (4d) we use the method of averaging functional corrections [3,4]. In the 

framework of the method to determine the first-order approximation of the projection of the 

velocity vz on shall to replace it in the right-hand side of equation (4d) on not yet known average 

value vz1z. After this replacement one can obtain relation for the first-order approximation of 

the considered component in the following form 
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The not yet known average value 1z was determined by using the following standard relation 
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where  is the continues of monitoring of transport of heat carrier. Substitution of relation (5) 

into relation (6) gives a possibility to obtain relation for the required average value 1z in the 

following form 
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The second-order approximation of the velocity projection could be obtained by replacing the 

required projection on the right-hand side of equation (4d) on the following sum vz2z+v1z. The 

considered approximation could be written as 
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We determine average value 2z by the following standard relation 
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Substitution of the first- and the second-order approximations of the considered velocity 

projection into relation (9) gives a possibility to obtain the required average value 2z in the 
following form 
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In this section the projection of the heat carrier velocity vz was calculated as the second-order 
approximation in the framework of the method of averaging functional corrections. Usually the 

second-order approximation is sufficient to make a qualitative analysis of the solution obtained 

and to obtained some quantitative estimates. Next, we write equation (1) in a cylindrical 
coordinate system 
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After that we transform the above equation to the following integro-differential form 
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To calculate distribution of temperature in space and time we again used the same method of 
averaging functional corrections. To calculate the first-order approximation of the required 

function we replace it with an as yet unknown mean value 1T in the right side of Eq. (12). Using 

the above algorithm we obtain the relation for the first-order approximation of temperature in the 

following form 
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Now let us calculate the not yet known average value of the first-order approximation of the 
required function by using the following relation 
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Substitution of the first-order approximation of temperature (13) into the relation (14) leads to the 

following result 
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We calculate the second-order approximation by using the standard procedure of method of 

averaging of function corrections [3,4], i.e. by replacement of the required function in the right 

side of Eq. (12) on the following sum: T2T +T1. In this case the second-order approximation of 

the required function could be written as 
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We calculate the average value of the second-order approximation of temperature of heat carrier 

2T by using the following standard relation [3,4] 
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Substitution of the first- and the second-order approximations of temperature into the relation 

(17) gives a possibility to obtain relation for the required average value in the following form 
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Analysis of the distribution of temperature in space and time has been done analytically by using 

the second-order approximation using the method of averaging functional corrections. The 
approximation is usually sufficient to obtain a qualitative analysis and to obtain some quantitative 

results. The results of analytical calculations were verified by comparing them with the results of 

numerical simulation. 

 

3. DISCUSSION 
 

In this section we analyzed temperature field in the system heat carrier - transportation system. 

Figures 2-4 show dependence of the temperature of the heat carrier on axial coordinate at 
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different values of width of section in the transportation system, velocity of inlet flow of heat 
carrier, monitoring time on flow of heat carrier. 
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Fig. 2a. Dependences of temperature of heat carrier on the axial coordinate at several values of width of 

section. Increasing of number of the curves corresponds to increasing of the considered width under 

condition: temperature of wall of transportation system is larger, than the heat carrier temperature 
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Fig. 2b. Dependences of temperature of heat carrier on the axial coordinate at several values of width of 

section. Increasing of number of the curves corresponds to increasing of the considered width under 

condition: temperature of wall of transportation system is smaller, than the heat carrier temperature 
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Fig. 3a. Dependences of temperature of heat carrier on the axial coordinate at several values of velocity of 

inlet flow of heat carrier. Increasing of number of the curves corresponds to increasing of the considered 
velocity under condition: temperature of wall of transportation system is larger, than the heat carrier 

temperature 
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Fig. 3b. Dependences of temperature of heat carrier on the axial coordinate at several values of velocity of 

inlet flow of heat carrier. Increasing of number of the curves corresponds to increasing of the considered 

velocity under condition: temperature of wall of transportation system is smaller, than the heat carrier 

temperature 
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Fig. 4a. Dependences of temperature of heat carrier on the axial coordinate at several values of monitoring 

time on flow of heat carrier (at t <). Increasing of number of the curves corresponds to increasing of the 

considered velocity under condition: temperature of wall of transportation system is larger, than the heat 

carrier temperature 

 

 
 

Fig. 4b. Dependences of temperature of heat carrier on the axial coordinate at several values of monitoring 

time on flow of heat carrier (at t <). Increasing of number of the curves corresponds to increasing of the 

considered velocity under condition: temperature of wall of transportation system is smaller, than the heat 

carrier temperature 

 

4. CONCLUSIONS 
 

In this paper we introduce an approach to control of temperature in the system heat carrier - 

transportation system due to local heating or cooling. We introduced a model with account forced 
convection and possible variation of several parameters of the considered system. Also we 

consider an analytical approach for analysis of mass and heat transport with account possible 

variation of several parameters of the above system. 

 

REFERENCES 

 
[1] H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids (Oxford: At the Clarendon Press. 1964). 

[2] Yu.D. Sokolov. About the definition of dynamic forces in the mine lifting. Applied Mechanics. Vol. 1 
(1). P. 23-35 (1955). 

[3] E.L. Pankratov. On influence of mismatch-induced stress and porosity of materials on manufacturing 

hetrostructure-based devices. Journal of coupled systems and multiscale dynamics. Vol. 6 (1). P. 36-52 

(2018). 

[4] E.L. Pankratov, E.A. Bulaeva. Optimal criteria to estimate temporal characteristics of diffusion 

process in a media with inhomogenous and nonstationary parameters. Analysis of influence of 

variation of diffusion coefficient on values of time characteristics. Reviews in theoretical science. Vol. 

1 (3). P. 305-316 (2013). 


	Abstract
	Keywords
	Heat transfer; controlling of temperature of gases and liquids; analytical approach for prognosis.


