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ABSTRACT 
 
This study explored the piecewise approach of the closed Newton-Cotes quadrature formulas (Trapezoidal, 

Simpson’s 1/3, and 3/8 rules) and how well they work with different kinds of functions in terms of 

convergence and accuracy. MATHEMATICA software was used to approximate the integrals and 

determine their errors, allowing for a comparison of convergence and accuracy. Simpson’s 1/3 and 3/8 

rules consistently outperformed the trapezoidal rule, demonstrating faster convergence and greater 

accuracy across a wide range of functions. However, as tolerance levels increased to a considerable 

magnitude, Simpson’s 3/8 rule emerged as the most robust among the three methods. We recommend 

investigating various domains to substantiate the findings of this study including a comprehensive error 

analysis that includes truncation error, round-off error, and error bounds to provide a more detailed 

understanding of the sources and magnitude of errors and to include higher-dimensional integrals to 

provide valuable insights into the robustness of these methods. 
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1. INTRODUCTION 
 
The Newton-Cotes quadrature methods are a class of numerical integration techniques based on 

polynomial interpolation over a set of equally spaced nodes [1]. These techniques provide a direct 

approximation of definite integral . However, they can quickly become unstable 

when applied to functions with distinct characteristics specially those that are not well-
approximated by low-degree polynomials over large intervals. This leads to a substantial increase 

of error, as the polynomial interpolant may not accurately capture the behaviour of the integrand 

over a large interval. 
 

The Newton-Cotes formulas are obtained by interpolating polynomials which approximate the 

tabulated function . Then integrating the function  over some interval  divided 

into  equal sub-intervals such that   and  [2]. The two types of Newton-

Cotes quadrature methods are open and closed. The  -point closed Newton-Cotes method 

includes endpoints of the closed interval  as nodes. It uses nodes 

 [3]. Unlike 

closed Newton-Cotes, open Newton-Cotes formulas do not include the endpoints of . 
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The most recognized closed Newton-Cotes formulas are the trapezoidal rule and Simpson’s 1/3 
and 3/8 rules, mainly because of their balance of simplicity and preciseness. These methods are 

widely applied across various areas of study, such as engineering, economics and finance, 

computational science, and more [4]. Trapezoidal rule and Simpson’s rule are interpolatory 

quadrature based on linear and quadratic interpolants, respectively [5]. These low-order rules are 
often slow to converge and return inaccurate results over large intervals due to the oscillatory 

nature of high-degree polynomials.  

 
High-order quadrature techniques would be necessary to integrate high-degree polynomials, 

however the values of the coefficients in these techniques are difficult to obtain and often 

numerically unstable [1][3]. Alternatively, the Composite Quadrature rules for trapezoidal and 
Simpson’s are simpler approach and considered an effective way to increase the accuracy of the 

result when integrating high-degree polynomials. These rules involve partitioning the interval 

 into subintervals then using low-order interpolants (e.g. Trapezoidal and Simpson) to 

approximate the integrals in each subinterval. 

 

The composite approach in numerical quadrature, particularly, using low-order Newton-Cotes 
methods like the trapezoidal rule and Simpson's rule has been extensively studied due to its 

practical advantages in improving accuracy and managing the convergence of integral 

approximations. The study by Udin, M.J.et al evaluated and compared the performance of 
Trapezoidal, Simpson’s 1/3, and 3/8 rules in terms of accuracy and efficiency, utilizing error 

analysis to determine which method performs better in providing accurate results [6]. Daan 

Huybrechs, reviewed and presented the difference between the low-order variants of the class of 

Newton-Cotes quadrature and the high-order quadrature (Least-Square quadrature) in terms of 
numerical stability and convergence properties [1]. Yalda Qani used the advanced family of 

closed Newton–Cotes numerical composite formulas to demonstrate some of the computational 

capabilities of the Maple package [7]. In the A.H. Nzokem study, he implemented both analytical 
and numerical methods (composite Newton-Cotes quadrature formulas) in solving the Gamma 

Distribution Hazard function [8]. Sheehan Olver investigated and explored the numerical 

integration of highly oscillatory functions, over both univariate and multivariate domains, using 
the combination of Filon-type methods and Levin-type methods [9]. Furthermore, Hamid 

Mottaghi Golshan proposed a numerical iterative method based on Picard iterations and Newton-

Cotes rules that can be used to approximate the multidimensional Fredholm–Urysohn integral 

equation of the second kind [10]. The study of Magalhaes, P. et al. discussed and compared the 
closed and open Newton-Cotes quadrature formula, utilizing twenty segments to assess the 

accuracy and convergence of the two methods [11]. In the work of Ali, A. J. et al, they utilized 

error and stability analysis to evaluate the degree of accuracy of analytical, numerical 
(Trapezoidal and Simpson’s 1/3 and 3/8 rules), and software-assisted (MatLab) methods [12]. 

Likewise, Erme Sermutlu conducted  a study utilizing MatLab and error analysis to compare 

Newton-Cotes and Gauss quadrature methods over the same number of intervals for diverse types 
of functions [13]. Additionally, John Roumeliotis used the software-assisted method (Maple) to 

prove the Ostrowski and corrected Trapezoidal inequalities and stated two new fourth-order 

quadrature formula [14]. Wu, J et. Al. explored and used the composite Newton-Cotes methods 

for computation of Hadamard finite-part integral with the second order singularity focusing on 
their pointwise superconvergence properties [15]. And, in the study conducted by Clarence Burg, 

he presented a new closed Newton–Cotes type of quadrature formula that uses first and higher 

order derivatives to increase the order of accuracy of the numerical approximations of definite 
integrals [16].  

 

This paper, like the cited studies, aims to investigate the Newton-Cotes quadrature methods 

(Trapezoidal and Simpson’s rules) for approximating definite integrals and analyse their 
convergence and accuracy. However, it will focus on the piecewise approach (composite rules) of 
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the closed Newton-Cotes quadrature methods and explore their applicability to various special 
function types. It will also determine how the selection of sub-intervals affects the accuracy and 

convergence of these approaches.  

 

2. MATERIALS AND METHODS 
 
Presented in this section is the piecewise approach of the three commonly used closed Newton-

Cotes quadrature formulas. 

 

2.1. Closed Newton-Cotes Quadrature Formulas 
 

Newton–Cotes methods consist of approximating the integrand  by a polynomial of degree , 

which matches  at  evenly spaced nodes [10]. The  -point closed Newton-Cotes 

method includes endpoints of the closed interval  as nodes [3, p.198]. It uses nodes 

 assuming the 

form  
 

        (2.1) 

where the weight  

     (2.2) 

Using the first order Lagrange interpolating polynomial, (2.1) and (2.2) return 

 
with, 

 
and 

 
Combining and simplifying, we obtain the standard trapezoidal rule,    

      
           (2.3) 

Since (2.3) can also be expressed as 

 
In a similar manner, using the second-order Lagrange interpolating polynomials, (2.1) and (2.2) 

give 

 
with, 
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We obtain the standard 1/3 Simpson’s rule, which is one of the most recognized closed Newton-

Cotes quadrature approaches in practice. 
 

     (2.4) 

Since (2.4) can also be written as 

 
 

Likewise, utilizing the third-order Lagrange interpolating polynomial (2.1) becomes, 

 

 
with 
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Combining and simplifying, we obtain the 3/8 Simpson’s rule 

 

    (2.5) 

Since  (2.5) can be 

expressed as 

 
 

2.2. Measure of Exactness  
 

Definition 2.1 [5, p. 121] An interpolatory quadrature rule has degree of exactness (degree of 

precision)  if for all  (polynomial interpolant),  

 

 
 

The definition indicates that a degree-  quadrature method has a degree of exactness  

This further implies that it can exactly integrate . However, there are exceptional cases 

wherein a degree-  interpolant can also exactly integrate higher degree polynomials. 

Consequently, the degree of precision of trapezoidal rule and Simpson’s rules are one and three, 

respectively.  
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2.3. Error Analysis for Closed Newton-Cotes Quadrature Methods 

 

The following theorem serves as basis for error analysis of the closed Newton-Cotes quadrature 

formulas since they are founded on polynomial interpolation and weighted sum of function 
values at specific nodes.  

 

Theorem 2.1 [5, p. 217] (Interpolation Error Formula) Suppose  and let 

 denote the polynomial that interpolates {  for distinct points 

 Then for every   there exist  such that  

 

                                          (2.6) 

 

From this formula follows a bound for the worst error over : 

 

 
 

Proof. Let  be some arbitrary points in the interval  and let  be 

the interpolation error of . We want an expression to describe  If  for any 

 then  and choosing arbitrary  in  returns (2.6). 

 

Now, suppose  for all , to describe  we define a function  for  in 

[  by 

 

 
Since  and , it follows that  For , we obtain 

 
Furthermore,  

 
Hence,  and  at the  distinct numbers  By Rolle’s 

theorem there exist a number  in  for which . And the derivative of 

 is  

 
Since  is of degree at most , then the  derivative . Additionally, 

 is of degree  polynomial, thus  
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Equation (2.6.1) becomes, 

 

 
Therefore, for some  

 
 

Theorem 2.2 [3, p. 198]  Suppose that  denotes The  -point closed 

Newton-Cotes formula with . There exist  for which 

 

 

           (2.7) 

If  is even and  and  

   

        (2.8) 

If  is odd and   

Using this theorem with  (2.8) returns 

 
 

From (2.3) with , we obtain the standard trapezoidal rule 

with its error term, 
 

 

 

     (2.9) 

                        where      . 

 

Similarly, we obtain the standard Simpson’s 1/3 rule with its error term using (2.4) with 

 and (2.7) becomes, 
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    (2.10) 

                        where      . 

 

Simpson’s 3/8 rule with its error term is obtained using (2.5) with 

and (2.8) yields, 

 

 

 

  (2.11) 

                        where       

 

These indicates that the degree of precision of (2.7) is  and (2.8) is  although the 

interpolation polynomial is of degree at most . 

 

2.4. Composite Rules 

 

Composite quadrature rules for trapezoidal and Simpson’s are simpler approach and is considered 

an effective way to increase the accuracy of the result when integrating high-degree polynomials. 

These rules involve partitioning the interval  into subintervals then using the low-order 

interpolants such as the standard Newton-Cotes methods on each subinterval. 
 

2.4.1. Composite Trapezoidal Rule 

 

Suppose interval  is partitioned into  intervals [  by 

. Employing the standard trapezoidal rule on  subinterval 

returns 

 

  (2.12) 
 

Since application of standard Newton-Cotes methods consider that  is evaluated at equally 

spaced nodes between and  , then (2.12) 

returns the composite trapezoidal rule, 

 

    (2.13) 
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Theorem2.3 [3, p. 206]Let  , and . 

There exists   for which the Composite Trapezoidal rule for  subintervals can be 

written with its error term as  

 

 (2.14) 

 
The error term in (2.14) can be derived from the summation of all errors in the application of 

standard trapezoidal rule on each subinterval. Thus, 

 

 

                          for . 

Since  then by Extreme Value Theorem,  

 

we have,            n  

and,                       

 

By Intermediate Value Theorem, there is   such that 

 

 

Hence,   

and since , then    

 

It is intriguing to note that the error term for the composite trapezoidal rule is  not  

that we have in (2.9). These are not comparable because for standard trapezoidal rule  is fixed at 

 since , but for composite trapezoidal rule  for positive integer . 

 

2.4.2. Composite Simpson’s Rule 

 

Composite Simpson’s 1/3 rule is obtained in an equivalent manner (as Composite Trapezoidal 

rule); however, we choose an even integer  , partitioning the interval  into  subintervals, 

then applying the standard Simpson’s rule on each consecutive pair of subintervals. Applying 

some algebraic manipulations, we obtain 
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(2.15) 

 

Theorem 2.4 [3, p. 206]  Let  be even , and 

. There exists   for which the composite Simpson’s 

rule for  subintervals can be written with its error term as  

 

 
(2.16) 

 
Similarly, the error term in (2.16) can be derived from the summation of all errors in the 

application of standard Simpson’s rule on each consecutive pair of subintervals. Thus, 

 

 

 

   for  for  . 

Since  then by Extreme Value Theorem,  

 

we have,                  

and                            

By Intermediate Value Theorem, there is   such that, 

 
Hence 

 

and since  ,  then  
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We can also observe that the error term for the Composite Simpson’s rule is , instead of 

 which was the error in the standard Simpson’s rule (2.10). This is simply because the  in 

standard Simpson’s rule is fixed at rule  while in composite Simpson’s rule it is rule 

 for an even integer   

 

2.5. Mathematica Software 
 

MATHEMATICA is considered a definitive system for modern technical computing [18]. It is 
widely used in highly computational environments (both numerical and symbolic) because of its 

robust and comprehensive features, which allow flexibility and reliability. We use 

MATHEMATICA not only to ensure accuracy and precision of the results but also to visualize 
and observe the behaviours of the functions in the three methods employed.  

 

3. RESULTS AND DISCUSSION 
 

This study investigates the robustness and accuracy of composite trapezoidal rule, Simpson’s 1/3 
rule, and Simpson’s 3/8 rule to approximate the definite integrals of the standard normal 

probability density function, incomplete gamma function, the Fresnel sine function, and 

Dawson’s integral These functions hold significant importance and find extensive applications in 
various disciplines such as Statistics, Business, and Engineering. The outcomes are discussed in 

this section. 

 

3.1. Standard Normal Probability Density Function 
 

The standard normal probability density function is given by . The function is 

the basis of calculating the area under the normal curve by determining the definite integral given 

a particular interval. However, due to the complexity of the function, it is tedious to determine the 
integral. For this reason, numerical integration is used to estimate the value within a given 

domain.  

 

Table 1 displays the results of approximating standard normal probability density function from 0 

to 1. This is particularly the area of the normal curve from  to  

The table shows that both Simpson’s 1/3 rule and 3/8 rules are the most efficient in terms 

approximating the integral since it only takes 2 subintervals,  and  for the 1/3 rule 

and  and  for the 3/8 rule for the approximate value to converge with actual value 

considering the absolute errors within  tolerance level. The trapezoidal rule on the other 

hand requires a significantly larger number of subintervals to achieve a comparable level of 

accuracy, requiring 21 subintervals to approach the exact value.  
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Table 1. Approximation of  within  

 

n 

Trapezoidal Rule Simpson's 1/3 Rule Simpson's 3/8 Rule 

Approx. 

Answer 

 

Exact 

Answer 

Abs. 

Error 

Approx. 

Answer 

Exact 

Answer 

Abs. 

Error 

Approx. 

Answer 

Exact 

Answer 

Abs. 

Error 

1 

0.3204565

025 

0.3413447

461 0.0209     

2 

0.3362609

146 

0.3413447

461 0.0051 

0.3415290

520 

0.3413447

461 0.0002  

3 

0.3390959

119 

0.3413447

461 0.0022   

0.3414258

380 

0.3413447

461 

0.000

1 

4 

0.3400818

445 

0.3413447

461 0.0013 

0.3413554

879 

0.3413447

461 0.0000   

5 

0.3405370

985 

0.3413447

461 0.0008    

6 

0.3407841

090 

0.3413447

461 0.0006  

0.3413495

080 

0.3413447

461 

0.000

0 

7 

0.3409329

509 

0.3413447

461 0.0004    

8 

0.3410295

157 

0.3413447

461 0.0003   

9 

0.3410957

025 

0.3413447

461 0.0002   

10 

0.3411430

365 

0.3413447

461 0.0002   

11 
0.3411780
536 

0.3413447
461 0.0002   

12 

0.3412046

843 

0.3413447

461 0.0001   

: 

: 

: 

: 

: 

: 
-do- 

  

21 
0.3412990
187 

0.3413447
461 0.0000   

 

Although both Simpson’s 1/3 and 3/8 rules require the same number of subintervals to achieve 

convergence, a closer examination reveals that the Simpson’s 3/8 rule yields a smaller absolute 
error before reaching convergence with the true value. It can be noted in Figure. 1 that there is a 

significant difference of the absolute error of the trapezoidal Rule compared to the other methods. 

A large gap of the errors is observed on the initial subintervals until the desired tolerance level is 
attained. On the other hand, there is a marginal difference between the errors of 1/3 rule and 3/8 

rule. 
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Figure 1. Absolute Error Graphs  

 

Below are the Mathematica outputs of approximation of  within : 

Absolute error set to be below:1.*10^-10  
Searching for n that satisfies absolute error less than:1.*10^-10  

**********************TRAPEZOIDAL RULE**************************** 

TOL met at n=9000, Absolute error at:2.489414785*10^-10 
n=9000 approx: 0.3413447458 exact: 0.3413447461 Abs error : 2.489414785*10^-10 

**********************SIMPSONS 1/3 RULE**************************** 

TOL met at n=74, Absolute error at:8.966438703*10^-11 
n=74 approx: 0.3413447458 exact: 0.3413447461 Abs error : 8.966438703*10^-11 

**********************SIMPSONS 3/8 RULE**************************** 

TOL met at n=90, Absolute error at:9.220813002*10^-11 

n=90, approx: 0.3413447458 exact: 0.3413447461 Abs error : 9.220813002*10^-11 
 

As revealed by the outputs, if we increase the tolerance level for absolute error to be within 

, there is a significance increase of the values of the subintervals across the three methods 

for the approximate value to converge with the exact value. Specifically, it necessitates 9000 

subintervals for the trapezoidal rule and 37 and 30 for 1/3 and 3/8 Simpsons rules, respectively. 

In the field of numerical integration, higher tolerance level indicates better precision and 

accuracy. 
 

3.2. Fresnel Sine Function 
 

The Fresnel sine integral,   is widely used in the field of optics and used 

in the calculation of electromagnetic field density. The approximation of the function at  is 

scrutinized in this study. The results in Table 2 indicates that there is a lesser variation in terms of 

the convergence behaviour across the 3 methods in approximating the definite integral 

considering the tolerance level of . It can be observed from the results that it only requires 

fewer subintervals of the intervals to achieve an approximation that closely aligns with the true 
value. The trapezoidal rule necessitated the use of 6 subintervals to produce an approximate value 

that converged with the exact value. In contrast, both Simpson’s 1/3 and 3/8 rules only required 4 

to reach a similar level of accuracy.  
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Table 2. Approximation of  within  

 

n 

Trapezoidal Rule Simpson's 1/3 Rule Simpson's 3/8 Rule 

Approx. 

Answer 

Exact 

Answer 
Error 

Approx. 

Answer 

Exact 

Answer 
Error 

Approx. 

Answer 

Exact 

Answer 
Error 

1 

0.500000

0000 

0.438259

1474 

0.061

7     

2 

0.441341

7162 

0.438259

1474 

0.003

1 

0.421788

955 

0.438259

1474 

0.016

5  

3 

0.438811

9291 

0.438259

1474 

0.000

6   

0.431163

4203 

0.438259

1474 

0.007

1 

4 

0.438427

7565 

0.438259

1474 

0.000

2 

0.437456

437 

0.438259

1474 

0.000

8   

5 

0.438327

0254 

0.438259

1474 

0.000

1    

6 

0.438291

5734 

0.438259

1474 

0.000

0 

0.438118

121 

0.438259

1474 

0.000

1 

0.437910

3055 

0.438259

1474 

0.000

3 

8 
 

0.438216

495 

0.438259

1474 

0.000

0  

9 
   

0.438197

1694 

0.438259

1474 

0.000

1 

12 
  

0.438240

3145 

0.438259

1474 

0.000

0 

 

Additionally, the comparative analysis of the absolute errors across the three methods displayed 

in Figure 2 reveals that the Simpson's 3/8 rule consistently yields the minimal magnitudes of 
absolute errors until the desired precision is achieved. The first subinterval signifies larger 

disproportions on the absolute errors. The gaps are minimized when the succeeding subintervals 

are considered. 

 

 
 

Figure 2. Absolute Error Graphs  

 

Below are the Mathematica outputs of approximation of   within  when 

the tolerance level is increased to . In contrast to the results using  the marginal 

difference of the subintervals is maintained across the three methods. As per the table, the 

number of subintervals needed to maintain a comparable level of accuracy are: 142 for 

trapezoidal rule, 101 for Simpson’s 1/3 rule, and 83 for 3/8 rule. 



Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.11, No.1/2, June 2024 

15 

Absolute error set to be below:1.*10^-10  
Searching for n that satisfies absolute error less than:1.*10^-10  

**********************TRAPEZOIDAL RULE**************************** 

TOL met at n=142, Absolute error at:9.834355552*10^-11 

n=142 approx: 0.4382591475 exact: 0.4382591474 Abs error : 9.834355552*10^-1 
**********************SIMPSONS 1/3 RULE**************************** 

TOL met at n=202, Absolute error at:9.880962715*10^-11 

n=202 approx: 0.4382591475 exact: 0.4382591474 Abs error : 9.880962715*10^-11 
**********************SIMPSONS 3/8 RULE**************************** 

TOL met at n=249, Absolute error at:9.6294972*10^-11 

n=249, approx: 0.4382591475 exact: 0.4382591474 Abs error : 9.6294972*10^-11 

 

3.3. Incomplete Gamma Function 

 

The incomplete gamma function given by  is commonly applied in the 

field of heat conduction, probability theory, and Fourier and Laplace transformations. The 

convergence analysis to approximate the value of the incomplete gamma function utilizing 

 on the interval  within is presented in Table 3.  

 

Table 3. Approximation of  within  

 

n 

Trapezoidal Rule Simpson's 1/3 Rule Simpson's 3/8 Rule 

Approx. 

Answer 

Exact 

Answer 
Error 

Approx. 

Answer 

Exact 

Answer 
Error 

Approx. 

Answer 

Exact 

Answer 
Error 

1 
0.18393
97206 

0.264241
1177 

0.080
3     

2 

0.24360

25252 

0.264241

1177 

0.020

6 

0.263490

1268 

0.264241

1177 

0.000

8  

3 

0.25502

05234 

0.264241

1177 

0.009

2   

0.263905

6237 

0.264241

1177 

0.000

3 

4 

0.25904

50402 

0.264241

1177 

0.005

2 

0.264192

5452 

0.264241

1177 

0.000

0   

5 

0.26091

28085 

0.264241

1177 

0.003

3    

6 

0.26192

87269 

0.264241

1177 

0.002

3  

0.264219

5021 

0.264241

1177 

0.000

0 

7 

0.26254

17462 

0.264241

1177 

0.001

7    

8 

0.26293

98017 

0.264241

1177 

0.001

3 
 

 

9 

0.26321

27902 

0.264241

1177 

0.001

0   

10 

0.26340

80987 

0.264241

1177 

0.000

8   

n 
Trapezoidal Rule   

Approx. 

Answer 

Exact 

Answer 
Error   

11 

0.26355

26272 

0.264241

1177 

0.000

7   

12 

0.26366

25656 

0.264241

1177 

0.000

6   
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13 

0.26374

81311 

0.264241

1177 

0.000

5   

14 

0.26381

60294 

0.264241

1177 

0.000

4   

15 

0.26387

08094 

0.264241

1177 

0.000

4   

16 

0.26391

56448 

0.264241

1177 

0.000

3   

17 
0.26395
28047 

0.264241
1177 

0.000
3   

18 

0.26398

39460 

0.264241

1177 

0.000

3   

19 

0.26401

03015 

0.264241

1177 

0.000

2   

: 

: 

: 

: 

: 

: 
-do- 

  

24 

0.26409

64512 

0.264241

1177 

0.000

1   

: 

: 

: 

: 

: 

: 
-do- 

  

41 

0.26419

15451 

0.264241

1177 

0.000

0   

 
There is an exceptionally large discrepancy in terms of the robustness of the trapezoidal rule as 

compared to Simpson’s 1/8 and 3/8 rules. To arrive at the desired accuracy level, the trapezoidal 

rule required more than 20 times the number of subintervals of the Simpsons rules,  and 

 subintervals for the 1/3 rule and  and  for the 3/8 rule. 

 

 
 

Figure 3. Absolute Error Graphs  

 

Relative to the results of the other two functions, the 3/8 rule maintained the lowest absolute error 
as the value converges the exact answer as displayed in Figure 3. It can be noted from the graph 

that in the first few values of subintervals, the absolute errors of utilizing the trapezoidal method 

are significantly larger in contrast to the other 2 methods. Simpson’s 1/3 and 3/8 rules exhibits no 
significant difference in the errors. 
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Mathematica outputs of approximation of   within  below compares the 

trapezoidal rule, Simpson's 1/3 rule, and Simpson's 3/8 rule highlighting the number of 

subintervals needed to achieve an absolute error when the tolerance level is within  The 

trapezoidal rule required 9000 subintervals to converge with the true value indicating slow 

convergence. This is a significant increase when compared to the  tolerance level. 

Simpson's 1/3 rule achieved the target accuracy with 52 subintervals while the Simpson's 3/8 rule 

met the tolerance with 44 subintervals. 

 
Absolute error set to be below:1.*10^-10 

Searching for n that satisfies absolute error less than:1.*10^-10 

**********************TRAPEZOIDAL RULE**************************** 
TOL met at n=9000, Absolute error at:1.028806873*10^-9 

n=9000 approx: 0.2642411166 exact: 0.2642411177 Abs error : 1.028806873*10^-9 

**********************SIMPSONS 1/3 RULE**************************** 
TOL met at n=106, Absolute error at:9.963702086*10^-11 

n=106 approx: 0.2642411166 exact: 0.2642411177 Abs error : 9.963702086*10^-11 

**********************SIMPSONS 3/8 RULE**************************** 

TOL met at n=132, Absolute error at:9.322431715*10^-11 
n=132, approx: 0.2642411166 exact: 0.2642411177 Abs error : 9.322431715*10^-11 

 

3.4. Dawson’s Integral 
 

The Dawson’s integral, ,  bears important contribution in the concept of 

heat conduction and the theory of electrical oscillations of special vacuum tubes. Table 4 shows 

the results when approximating the value of the Dawson’s integral on the interval  

Comparative analysis with the results obtained in incomplete gamma function shows the same 

convergence behaviour using the trapezoidal rule. The data further reveals that it takes 58 

subintervals to attain the targeted level of precision. The magnitude is significantly larger as 
compared to the outcomes of Simpson’s 1/3 and 3/8 rules. It is apparent on the results that the 3/8 

rule is the most efficient method, requiring only 3 subintervals ( , 6, and 9), in comparison 

to the 1/3 rule, which demands 4 subintervals ( , 4, 6, and 8) for the approximate answer to 

converge with the exact answer. 

 

Table 4. Approximation of  within  

 

n 

Trapezoidal Rule Simpson's 1/3 Rule Simpson's 3/8 Rule 

Approx. 

Answer 

Exact 

Answer 
Error 

Approx. 

Answer 

Exact 

Answer 
Error 

Approx. 

Answer 

Exact 

Answer 
Error 

1 
0.683939

7206 

0.5380795

069 
0.1459 

    

2 
0.578153
1367 

0.5380795
069 

0.0401 
0.5428909
420 

0.53807
95069 

0.0048 
 

3 
0.556268

4773 

0.5380795

069 
0.0182 

  

0.54030

95719 

0.538079

5069 0.0022 

4 
0.548390

1066 

0.5380795

069 
0.0103 

0.5384690

966 

0.53807

95069 
0.0004 

  
5 

0.544702

3760 

0.5380795

069 
0.0066 

  

6 
0.542687

9211 

0.5380795

069 
0.0046 

0.5381610

690 

0.53807

95069 
0.0001 

0.53825

47691 

0.538079

5069 0.0002 
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7 
0.541469

3850 

0.5380795

069 
0.0034 

  

  

8 
0.540676

9309 

0.5380795

069 

 

0.0026 0.5381058

724 

0.53807

95069 
0.0000 

9 
0.540132

9056 

0.5380795

069 
0.0021 

  

0.53811

59591 

0.538079

5069 0.0000 

10 
0.539743

4061 

0.5380795

069 
0.0017 

  

11 
0.539455
0259 

0.5380795
069 

0.0014 

12 
0.539235

5782 

0.5380795

069 
0.0012 

13 
0.539064

7298 

0.5380795

069 
0.0010 

14 
0.538929

1253 

0.5380795

069 
0.0008 

15 
0.538819

6999 

0.5380795

069 
0.0007 

16 
0.538730

1253 

0.5380795

069 
0.0007 

17 
0.538655

8760 

0.5380795

069 
0.0006 

18 
0.538593

6459 

0.5380795

069 
0.0005 

19 
0.538540

9745 

0.5380795

069 
0.0005 

20 
0.538496

0001 

0.5380795

069 

 

0.0004 

21 
0.538457
2932 

0.5380795
069 

0.0004 

22 
0.538423

7410 

0.5380795

069 
0.0003 

: 

: 

: 

: 

: 

: 
-do- 

26 
0.538325

9945 

0.5380795

069 
0.0002 

: 

: 

: 

: 

: 

: 
-do- 

34 
0.538223

6615 

0.5380795

069 
0.0001 

: 

: 

: 

: 

: 

: 
-do- 

58 
0.538129

0487 

0.5380795

069 
0.0000 

 
As observed from Figure 4, the absolute errors of the trapezoidal rule considering the first few 

intervals exhibits a wide gap as compared to Simpson’s 1/3 and 3/8 rules. Although there is a 

marginal difference on the errors between 1/3 and 3/8 rules, the latter bagged the lowest 
magnitude. 
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Figure 4. Absolute Error Graphs  

 

When the tolerance level is increased to  it can be observed from Table 8 that trapezoidal 

rule requires 9000 subintervals to achieve convergence. This is comparable to the outcomes of 

the incomplete gamma function and standard normal distribution function. Simpson’s 3/8 Rule 

has the fastest convergence which necessitates the use of 75 subintervals while the 1/3 Rule 

requires 92 subintervals. 
 

Absolute error set to be below:1.*10^-10  

Searching for n that satisfies absolute error less than:1.*10^-10  
**********************TRAPEZOIDAL RULE**************************** 

TOL at n=9000, Absolute error at:2.057612525*10^-9 

n=9000 approx: 0.538079509 exact: 0.5380795069 Abs error : 2.057612525*10^-9 

**********************SIMPSONS 1/3 RULE**************************** 
TOL met at n=184, Absolute error at:9.693024161*10^-11 

n=184 approx: 0.538079509 exact: 0.5380795069 Abs error : 9.693024161*10^-11 

**********************SIMPSONS 3/8 RULE**************************** 
TOL met at n=225, Absolute error at:9.753819974*10^-11 

n=225, approx: 0.538079509 exact: 0.5380795069 Abs error: 9.753819974*10^-11 

 

4. CONCLUSIONS 
 
The results in the preceding section reveal distinct patterns regarding the efficiency and accuracy 

of various numerical integration methods across different classes of functions. Simpson’s 1/3 and 

3/8 rules consistently surpass the trapezoidal rule. The two methods show faster convergence and 
higher level of accuracy. However, when the tolerance level is increased to a considerable 

magnitude, the Simpson’s 3/8 rule emerged as the most robust among the three methods. 

Moreover, comparative analysis of absolute errors reveals that the Simpson’s 3/8 rule yields 
smaller magnitudes of absolute errors. Conversely, the trapezoidal rule consistently exhibits a 

slower convergence rate, which requires larger number of subintervals to attain the desired level 

of accuracy. 

 

The four functions utilized a common interval  for estimating the definite integral, thus it is 

recommended to investigate various domains to substantiate the findings and to gain a deeper 
understanding on the numerical methods utilized in the study. In addition to examining absolute 

error, future research should incorporate a comprehensive error analysis that includes relative 
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error, truncation error, and round-off error and error bound. This can provide a more detailed 
understanding of the sources and magnitudes of errors in numerical integration. Furthermore, we 

recommend extending the research to include higher-dimensional integrals could provide 

valuable insights into the robustness of these numerical methods.  
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