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ABSTRACT 
 

In this paper, we give some new definition of Compatible mappings of type (P), type (P-1) and type (P-2) in 

intuitionistic  generalized fuzzy metric spaces and prove  Common fixed point theorems for six mappings 

under the  conditions of compatible mappings of type (P-1) and type (P-2) in complete intuitionistic fuzzy 

metric spaces. Our results intuitionistically fuzzify the result of Muthuraj and Pandiselvi [15]  
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1.INTRODUCTION 
 
The Concept of fuzzy set was introduced by Zadeh [23] in 1965 .Following the concept of fuzzy 

sets, Deng [6] Kaleva and Seikalla [12] and kramosil and Michalek [13] introduced the concept of 

fuzzy metric space, George and Veeramani [7] modified the concept of fuzzy metric space 

introduced by kramosil and Michalek [13] .  
 

Further, Sedghi and Shobe [19] defined ℳ-fuzzy metric space and proved a common fixed point 

theorem in it. Jong  Seo Park [15] introduced the concept of semi compatible and Weak 

Compatible maps in fuzzy metric space and proved some fixed point theorems satisfying certain 

conditions in ℳ-fuzzy metric spaces. 
 

As a generalization of fuzzy sets, Atanassov [1] introduced and studied the concept of 

intuitionistic fuzzy sets. Using the idea of intuitionistic fuzzy sets Park [16] defined the notion of 

intuitionistic fuzzy metric space with the help of continuous t- norm and continuous t- conorm as 

a generalization of fuzzy metric space, George and Veeramani [8] had showed that every metric 

induces an intuitionistic fuzzy metric and found a necessary and sufficient conditions for an 

intuitionistic fuzzy metric space to be complete. Choudhary [4] introduced mutually contractive 

sequence of self maps and proved a fixed point theorem. Kramaosil and Michalek [13] introduced 

the notion of Cauchy sequences in an intuitionistic fuzzy metric space and proved the well known 

fixed point theorem of Banach[2]. Turkoglu et al [22] gave the generalization of Jungck’s[11] 

Common fixed point theorem to intuitionistic fuzzy metric spaces. 
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In this paper, we extend the result of common fixed point theorem for compatible mappings of 

type (P-1) and type (P-2) in intuitionistic  fuzzy metric space and prove  common fixed point 

theorem of type (P-1) and type (P-2) in intuitionistic  fuzzy metric spaces, we also give an 

example to validate our main theorem. Our results intuitionistically  fuzzify the result of Muthuraj 

and Pandiselvi [15].  

 

2. PRELIMINARIES 
 

We start with the following definitions. 
 

Definition 2.1 
 

A binary operation ∗ : [0,1] × [0,1] → [0,1] is said to be a continuous t-norm if * is satisfies the 

following conditions.  

 

(i) ∗ is commutative and associative,  

(ii) ∗ is continuous,  

(iii) a∗1 = a for all a∈ [0,1],  

(iv) a∗b ≤ c∗d whenever a ≤ c and b ≤ d for all a,b,c,d ∈ [0,1]. 

  

Definition 2.2  
 

A binary operation ◊ : [0,1] × [0,1] → [0,1] is said to be a continuous t-conorm if ◊ satisfies the 

following conditions :  

  

(i) ◊ is commutative and associative,  

(ii) ◊ is continuous,  

(iii) a ◊ 0 = a for all a ∈ [0,1], 

(iv) a ◊ b ≤ c ◊ d whenever a ≤ c and b ≤ d for all a,b,c,d ∈ [0,1].  

 

Definition 2.3 

 

A 5-tuple (X, ℳ, �, ∗, ◊) is called an intuitionistic fuzzy metric space if X is an arbitrary  set, ∗ 

is a continuous t-norm, ◊ a continuous t-conorm and ℳ, � are fuzzy sets on X3 × (0, ∞), 

satisfying the following conditions, for each x, y, z, a∈X and 

t, s > 0,  
 

a) ℳ( x, y, z, t ) + �( x, y, z, t ) ≤ 1.  

b) ℳ( x, y, z, t ) > 0.  

c) ℳ( x, y, z, t ) = 1 if and only if x = y = z. 

d) ℳ( x, y, z, t ) = ℳ ( p{ x, y, z}, t) where p is a permutation function,  

e) ℳ( x, y, a, t ) ∗ ℳ( a, z, z, s ) ≤  ℳ( x, y, z, t + s )  

f) ℳ( x, y, z ) : ( 0, ∞) → [0, 1] is continuous  

g) �( x, y, z, t )  > 0 

h) �( x, y, z, t ) = 0, if and only if x = y = z,  

i) �( x, y, z, t  = �( p{ x, y, z}, t) where p is a permutation function,  

j) �( x, y, a, t ) ◊ �( a, z, z, s ) ≥ �( x, y, z, t + s ),  

k) �( x, y, z, ⋅) : ( 0, ∞) → [0, 1] is continuous.  

 
Then (ℳ, �) is called an intuitionistic fuzzy metric on X. 
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Example 2.4  
 

Let X = R, and ℳ(x, y, z, t ) = 
���|�	
|�|
	�|�|�	�|, �( x, y, z, t ) = 

|�	
|�|
	�|�|�	�|��|�	
|�|
	�|�|�	�| for every x, 

y, z and t > 0, let A and B defined as Ax = 2x + 1, Bx = x + 2, consider the sequence xn =  � +1, n 

= 1 , 2,… Thus we have  

  lim→∞ ℳ(Axn, 3, 3, t) =  lim→∞ ℳ(Bxn, 3, 3, t) =1 and  

 

 lim→∞ �( Axn, 3, 3, t) =  lim→∞ �( Bxn, 3, 3, t) = 0, for every t > 0.  

 

Then A and B satisfying the property (E).  

 

Definition 2.5  

 

Let (X, ℳ, �, ∗,◊ ) be an intuitionistic fuzzy metric space and {xn} be a sequence in X.  

 

a) {xn} is said to be converges to a  point x∈X, if  lim→∞ℳ( x, x, xn, t ) = 1 and 

 lim→∞�( x, x, xn, t ) = 0, for all t > 0.  

b) {xn} is called Cauchy sequence if  lim→∞ℳ(xn+p, xn+p, xn, t) = 1 and 

 lim→∞�(xn+p, xn+p, xn, t) = 0 for all t > 0 and p > 0.  

c) An intuitionistic fuzzy metric space in which every Cauchy sequence is convergent is 

said to be complete.  

 

Lemma 2.6  

 

Let (X, ℳ, �, ∗, ◊) be an intuitionistic fuzzy metric space. Then ℳ(x, y, z, t) and �(x, y, z, t) 

are non-decreasing with respect to t, for all x, y, z in X. 

 

Proof 

 

By definition 2.3, for each x, y, z, a ∈X and t, s > 0  

we have ℳ(x, y, a, t ) ∗ ℳ(a, z, z, s ) ≤  ℳ(x, y, z, t + s ). If we set a = z,  

we get ℳ(z, y, z, t ) ∗ ℳ(z, z, z, s )  ≤  ℳ(x, y, z, t + s ), that is 

ℳ(x, y, z, t + s )  ≥  ℳ(x, y, z, t ).  

Similarly, �(x, y, a, t) ◊ �(a, z, z, s ) ≥ �(x, y, z, t + s ), for each x, y, z, a∈X and 

t, s > 0, by definition of (X, �, ◊ ). If we set a = z, we get 

�(x, y, z, t ) ◊ �(z, z, z, s ) ≥ �(x, y, z, t + s )  

that is �(x, y, z, t + s ) ≤ �(x, y, z, t) .Hence in IFMS (X, ℳ, �, ∗, ◊ ),  

ℳ(x, y, z, t ) and �(x, y, z, t ) are non-decreasing with respect to t, for all x, y, z in X.  
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3.COMPATIBLE MAPPINGS OF TYPE  

 
Definition 3.1 

 

Let A and S be self mappings from an intuitionistic fuzzy metric space (X, ℳ, �, ∗,◊) into itself. 

Then the mappings are said to be compatible if 

 lim→∞ℳ(ASxn, SAxn, SAxn, t) = 1 and 

 lim→∞�(ASxn, SAxn, SAxn, t) = 0, for all t > 0 whenever {xn} is a sequence in X such that  lim→∞ Axn 

=  lim→∞Sxn = z for some z∈X.  

 

Definition 3.2 

 

Let A and S be self mappings from an intuitionistic fuzzy metric space (X, ℳ, �, ∗, ◊ ) into 

itself. Then the mappings are said to be compatible of type (P), if 
 

  lim→∞ ℳ(AAxn, SSxn, SSxn, t ) = 1 and  lim→∞�(AAxn, SSxn, SSxn, t ) = 0 for all t > 0, whenever 

{xn} is a sequence in X such that  lim→∞Axn =  lim→∞Sxn = z for some z∈X.  

 

Definition 3.3 

 

Let A and S be self mappings from an intuitionistic fuzzy metric space (X, ℳ, �, ∗, ◊) into itself. 

Then the mappings are said to be R-Weakly commuting of type (P), if there exists some R > 0, 

such that ℳ(AAx, SSx, SSx, t) ≥ ℳ( Ax, Sx, Sx, �� ), 
 �(AAx, SSx, SSx, t) ≤ �(Ax, Sx, Sx,

� �), for all x in X and t > 0. 

 

Definition 3.4 

 

Let A and S be self mappings from an intuitionistic fuzzy metric space (X, ℳ, �,  ∗, ◊) into 

itself. Then the mappings are said to be compatible of type (P-1) if 

  lim→∞ℳ(SAxn, AAxn, AAxn, t ) = 1 and  lim→∞ �( SAxn, AAxn, AAxn, t ) = 0 for all t > 0, whenever 

{xn} is a  sequence in X such that   lim→∞Axn  =  lim→∞ S xn = z for some z∈X.  

 

Definition 3.5  
 

Let A and S be self mappings from an intuitionistic fuzzy metric space (X, ℳ, �, ∗,◊ ) into itself. 

Then the mappings are said to be compatible of type (P-2) if 

  lim→∞ ℳ (AAxn, SSxn, SSxn, t) = 1 and  lim→∞�(AAxn, SSxn, SSxn, t) = 0 for all t > 0 whenever {xn} 

is a sequence in X such that  lim→∞ Axn =  lim→∞Sxn = z for some z∈X.  
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Proposition 3.6 

 

Let A and S be self mappings from an intuitionistic fuzzy metric space (X, ℳ, �, ∗, ◊ ) into 

itself.  

 

a) If A is continuous map then the pair of mappings (A, S) is compatible of type (P-1) if and 

only if A and S are compatible. 

 

b) If S is a continuous map then the pair of mappings (A, S) is compatible of  

type (P-2) if and only if A and S are compatible.  
 

Proof 

 

a) Let  lim→∞ Axn =  lim→∞Sxn = z for some z ∈ X, and let the pair (A, S) be compatible of type 

(P-1). Since A is continuous, we have  lim→∞ ASxn = Az and  lim→∞ AAxn = Az. Therefore it 

follows that  

 

ℳ� SAx, ASx, ASx, t � ≥ ℳ � SAx, AAx, AAx, �� �  

                                           ∗ ℳ� AAx, ASx, ASx, �� � and  

�� SAx, ASx, ASx, t � ≤ � � SAx, AAx, AAx, �� �  

                                           ◊ �� AAx, ASx, ASx, �� �  

yields  lim→∞ℳ ( SAxn, ASxn, ASxn, t ) ≥ 1 ∗ 1 = 1 and 

 lim→∞�( SAxn, ASxn, ASxn, t )  ≤  0 ◊ 0 = 0 and so the mappings A and S are compatible. 

Now, let A and S be compatible. Therefore it follows that 

 

ℳ�SAx, AAx, AAx, t � ≥ ℳ �SAx, ASx, ASx, t2 � 

∗ ℳ�ASx, AAx, AAx, t2 � 

��SAx, AAx, AAx, t � ≤ � �SAx, ASx, ASx, t2 � 

◊ ��ASx, AAx, AAx, t2 � 

yields  lim→∞ℳ(SAxn, AAxn, AAxn, t ) ≥ 1 ∗ 1 = 1 and 

 lim→∞�( SAxn, AAxn, AAxn, t ) ≤  0 ◊ 0 = 0 and  

so that pair of mappings (A,S) are compatible of type (P-1). 
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b) Let  lim→∞ Sxn =  lim→∞   Axn = z for some z in X and let the pair (A, S) be compatible of type 

(P-2). Since S is continuous, we have  lim→∞SAxn = Sz and 

 

 lim→∞  SSxn  = Sz. Therefore it follows that  

ℳ�SAx, ASx, ASx, t� ≥ ℳ �SAx, SSx, SSx, t2 � 

∗ ℳ �SSx, ASx, ASx, �� � and 

��SAx, ASx, ASx, t� ≤ � �SAx, SSx, SSx, t2 � 

◊ � �SSx, ASx, ASx, t2 � 

yields  lim→∞ ℳ( SAxn, ASxn, ASxn, t ) ≥ 1 ∗ 1 = 1 and 

 lim→∞ �( SAxn, ASxn, ASxn, t ) ≤  0 ◊ 0 = 0 and so the mappings A and S are compatible. 

Now let A and S be compatible.  Then we have  

ℳ�ASx, SSx, SSx, t� ≥ ℳ �ASx, SAx, SAx, t2 � 

∗ ℳ �SAx, SSx, SSx, �� � and 

��ASx, SSx, SSx, t� ≤ � �ASx, SAx, SAx, t2 � 

◊ � �SAx, SSx, SSx, t2 � 

yields  lim→∞ ℳ(ASxn, SSxn, SSxn, t ) ≥ 1 ∗ 1 = 1 and 

 lim→∞ �(ASxn, SSxn, SSxn, t) ≤  0 ◊ 0 = 0 and so the pair of mappings (A, S) are 

compatible of type (P-2). 

 

Proposition 3.7 
 

Let A and S be self mappings from an intuitionistic fuzzy metric space (X, ℳ, �, ∗, ◊) into itself. 

If the pair (A, S) is compatible of type (P-2) and Sz = Az for some z∈X. Then ASz = SSz. 

 
Proof: 
 

Let { xn} be a sequence in X defined by xn = z for n=1,2,… and let Az = Sz.  

Then we have  lim→∞Sxn = Sz and  lim →∞  Axn = Az. Since the pair (A, S) is compatible of type (P-2), 

we have 

ℳ( ASz, SSz, SSz, t ) =  lim  →∞ ℳ�ASxn, SSxn, SSxn, t ) = 1 and 

�( ASz, SSz, SSz, t )  =  lim→∞ �(ASxn, SSxn, SSxn, t ) = 0.  

Hence ASz = SSz. 
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Proposition 3.8 

 

Let A and S self mappings from an intuitionistic fuzzy metric space (X, ℳ, �, ∗, ◊) with t ∗ t  ≥  

t and (1- t)  ◊ (1- t) ≤ 1- t  for all t ∈ [0, 1] if the pair (A, S) are compatible of  type (p -1) and Axn, 

Sxn → z for some z in X and a sequence {xn} in X.  

Then AAxn → Sz, if S is continuous at z. 

 

Proof 
 

Since S is continuous at z, we have SAxn → Sz. Since the pair (A, S) are compatible of type (P-1), 

we have ℳ(SAxn, AAxn, AAxn, t) → 1 as n → ∞.  It follows that  

 ℳ( Sz, AAxn, AAxn, t)  ≥  ℳ( Sz, SAxn, SAxn, �� ) ∗ ℳ( SAxn, AAxn, AAxn, �� )  and 

� (Sz, AAxn, AAxn, t ) ≤  � (Sz, SAxn, SAxn, �� ) ∗ �( SAxn, AAxn, AAxn, �� ) yield 

ℳ (Sz, AAxn, AAxn, t) ≥ 1 ∗1 = 1 and 

�(Sz, AAxn, AAxn, t) ≤ 0 ◊ 0 = 0 and so 

we have AAxn → Sz as n → ∞. 
 

Proposition 3.9 

 

Let A and S be self mappings from an intuitionistic fuzzy metric space (X, ℳ, �, ∗, ◊) with t ∗t ≥ 

t and  (1- t)  ◊ (1- t) ≤ 1- t for t ∈ [0, 1].  If the pair (A, S) are compatible of type (P - 2) and Axn, 

Sxn→z for some z in X and sequence {xn} in X. Then SSxn → Az if A is continuous at z.  

 

Proof  
 

Since A is continuous at z, we have ASxn → Az. Since the pair (A, S) are compatible of type (P - 

2), we have ℳ( ASxn, SSxn, SSxn, t ) →1 as n→∞, it follows that  
 

 ℳ(Az, SSxn, SSxn, t ) ≥ ℳ(Az, ASxn, ASxn,  �� ) ∗ ℳ( ASxn, SSxn, SSxn, �� ) and 

�(Az, SSxn, SSxn, t ) ≤ �(Az, ASxn, ASxn, �� ) ◊ �(ASxn, SSxn, SSxn, �� ) yield 

 lim→∞ ℳ(Az, SSxn, SSxn, t ) ≥ 1 ∗ 1 = 1 and 

 lim→∞ �( Az, SSxn, SSxn, t ) ≤ 0 ◊ 0 = 0 and so  

we have SSxn → Az as n → ∞.  
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4. MAIN RESULTS 
 

Theorem 4.1 

 

Let (X, ℳ, �, ∗,◊) be a complete generalized intuitionistic fuzzy metric space and let A, B, P,Q, 

S and T be self mappings of X satisfying the following conditions.  

 

(i) P(X) ⊆ ST (X), Q(X) ⊆ AB(X)  

(ii) The pair (P, AB) and (Q, ST) are compatible mappings of type (P) 

(iii) ST is continuous  

(iv) ℳ( Px, Qz, Qz, qt)  ≥  min {ℳ(ABx, Py, Qy, t), ℳ(ABx, Py, STz, t),  

                                                      ℳ(Qy, STz, Py, t),  ℳ(ABx, Qy, STz, t)}  and 

                      �( Px, Qz, Qz, qt)   ≤   max{ �(ABx, Py,Qy, t),  �(ABx, Py, STz, t), 

                                                                             �(Qy, STz, Py, t), �(ABx, Qy, STz, t)}  

then the mappings P, Q, AB  and ST have a unique common fixed point in X.  

 

Proof 

 
Let x0 be any arbitrary point in X. Thus we construct a sequence {yn} in X such that  

y2n-1 = STx2n-1 = Px2n-2 and y2n = ABx2n = Qx2n-1.  Put x = x2n-1, y = x2n-1, z = x2n.  

 

ℳ� Px�	�, Qx�, Qx�, qt � ≥min
$%
&ℳ� ABx�	�, Px�	�, Qx�	�, t �,ℳ�ABx�	�, Px�	�, STx�, t �,ℳ� Qx�	�, STx�, Px�	�, t �,ℳ� ABx�	�, Qx�	�, STx�, t � )*

+
 

ℳ� y� , y���, y���, qt � ≥  min
$%
&ℳ� y�	�,  y�,  y�, t �,ℳ� y�	�,  y�,  y�, t �,ℳ� y� ,  y�,  y�, t �,ℳ�y�	�,  y�,  y�, t � )*

+
 

ℳ� y�, y���, y���, qt� ≥ ℳ�y�	�, y�, y� , t� 

 
This implies that ℳ� y� , y���, y���, t�is an increasing sequence of positive real numbers.  

�� Px�	�, Qx�, Qx�, qt �  ≤ max
$%
&�� ABx�	�, Px�	�, Qx�	�, t �,��ABx�	�, Px�	�, STx�, t �,�� Qx�	�, STx�, Px�	�, t �,�� ABx�	�, Qx�	�, STx�, t � )*

+
 

�� y� , y���, y���, qt �  ≤  max
$%
&�� y�	�,  y� ,  y� , t �,�� y�	�,  y� ,  y� , t �,�� y�,  y�,  y�, t �,��y�	�,  y� ,  y� , t � )*

+
 

�� y�, y���, y���, qt�  ≤  ��y�	�, y�, y�, t� 

 

This implies that �� y�, y���, y���, t� is an decreasing sequence of positive real numbers. 

Now to prove that ℳ� y, y��, y��, t� converges to 1 as n → ∞ and �� y�, y���, y���, t� converges to 0 as n → ∞. By lemma 2.6, 
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ℳ� y , y��, y��, t � ≥ ℳ � y	�, y, y, t q � ≥  ℳ � y	�, y	�, y	�, tq� � 

.  .  .  ≥ ℳ� y0, y�, y�, tq � 

Thus ℳ� y, y��, y��, t � ≥  ℳ � y0, y�, y�, �23 � and 

 

�� y, y��, y��, t �  ≤ � � y	�, y, y, t q � ≤   � � y	�, y	�, y	�, tq� � 

.  .  .  ≤ �� y0, y�, y�, tq � 

Then by the definition of IFMS, 

 ℳ( yn, yn+p, yn+p, t )  ≥  ℳ( yn, yn+1, yn+1, �4 ) ∗… p times …∗ ℳ( yn+p-1, yn+p, yn+p, �4 ) 
                               ≥  ℳ( y0, y1, y1, � 23 ) ∗… p times …∗  ℳ( y0, y1, y1, � 4235678 ) 

 

Thus by the definition of IFMS,  

 �(yn, yn+p, yn+p, t)    ≤  �( yn, yn+1, yn+1,  �4 ) ∗… p times …∗ �( yn+p-1, yn+p-1, yn+p,  �4 ) 
                              ≤  �( y0, y1, y1, � 23 ) ∗ … p times … ∗ �( y0, y1, y1, � 4235678 ). 

 lim→∞ℳ( yn, yn+p, yn+p, t ) ≥  1 ∗ 1∗… p times …∗ 1.   lim→∞ℳ( yn, yn+p, yn+p, t ) = 1 and 

 lim→∞ �( yn, yn+p, yn+p, t ) ≤  0 ∗ 0∗…∗ p times …∗ 0.   lim→∞ �(yn, yn+p, yn+p, t ) =  0.  

Thus {yn} is a Cauchy sequence in intuitionistic fuzzy metric space X.  

Since X is complete, there exists a point u∈X such that yn → u.  

Thus {ABx2n}, {Qx2n-1}, {STx2n-1},  {Px2n-2} are Cauchy sequence converge to u.  

Put x = ABx2n, y = u, z = STx2n-1 in (iv), we get  

 

ℳ� PABx�, QSTx�	�, QSTx�	�, qt � ≥ min
$%
& ℳ�ABABx�, Pu, Qu, t�,ℳ�ABABx�, Pu, STSTx�	�, t �,ℳ�Qu, STSTx�	�, Pu, t�,ℳ�ABABx� , Qu, STSTx�	�, t �,)*

+
 and  

 

�� PABx�, QSTx�	�, QSTx�	�, qt �  ≤  max
$%
& ��ABABx�, Pu, Qu, t�,��ABABx�, Pu, STSTx�	�, t �,��Qu, STSTx�	�, Pu, t�,��ABABx�, Qu, STSTx�	�, t �,)*

+
.  
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Now take the limit as n → ∞ and using (ii), we get,  

 

ℳ�Pu, Qu, Qu, qt� ≥  min  :ℳ� Pu, Pu, Qu, t�, ℳ� Pu, Pu, Qu, t�ℳ� Qu, Qu, Pu, t�, ℳ� Pu, Qu, Qu, t�; and 

 

��Pu, Qu, Qu, qt�  ≤ max  :�� Pu, Pu, Qu, t�, �� Pu, Pu, Qu, t��� Qu, Qu, Pu, t�, �� Pu, Qu, Qu, t�;. 

 

Then by lemma 2.6, we get  

 

ℳ�Pu, Qu, Qu, qt� ≥ ℳ �Pu, Qu, Qu, t� and 

��Pu, Qu, Qu, qt�  ≤ � �Pu, Qu, Qu, t�. 
 

Therefore Pu = Qu. Now put x = ABx2n, y = x2n-1, z = x2n-1, in (iv), we get  

 

ℳ� PABx�, Qx�	�, Qx�	�, qt �≥min
$%
& ℳ� ABABx�, Px�	�, Qx�	�, t�,ℳ�ABABx�, Px�	�, STx�	�, t �,ℳ� Qx�	�, STx�	�, Px�	�, t �,ℳ�ABABx�, Qx�	�, STx�	�, t �)*

+
 and 

 

�� PABx�, Qx�	�, Qx�	�, qt � ≤ max
$%
& �� ABABx�, Px�	�, Qx�	�, t�,��ABABx� , Px�	�, STx�	�, t �,�� Qx�	�, STx�	�, Px�	�, t �,��ABABx�, Qx�	�, STx�	�, t �)*

+
 

 

Thus we have ℳ� Pu, u, u, qt� ≥ ℳ� Pu, u, u, t�  and  

 

�� Pu, u, u, qt� ≥ �� Pu, u, u, t�. 

 

Therefore Pu = u. This implies Pu = Qu = u.  

 

Now put x = Px2n-2, y = Px2n-2, z = u in (iv), we get  

 

ℳ�PPx�	�, Qu, Qu, qt� ≥ min 
$%
&ℳ� ABPx�	�, PPx�	�, QPx�	�, t �,ℳ�ABPx�	�, PPx�	�, STu, t �,ℳ� QPx�	�, STu, PPx�	�, t �,ℳ�ABPx�	�, QPx�	�, STu, t � )*

+ and 
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��PPx�	�, Qu, Qu, qt� ≤ max 
$%
&ℳ� ABPx�	�, PPx�	�, QPx�	�, t �,ℳ�ABPx�	�, PPx�	�, STu, t �,ℳ� QPx�	�, STu, PPx�	�, t �,ℳ�ABPx�	�, QPx�	�, STu, t � )*

+
. 

 

Now taking the limit as n → ∞ and on using (ii) and  (iii), we get  

 

ℳ�ABu, u, u, qt� ≥min :ℳ�ABu, ABu, u, t �, ℳ�ABu, ABu, u, t �,ℳ� Qu, u, ABu, t �, ℳ�ABu, Qu, u, t � ; 

 

��ABu, u, u, qt�  ≤ max :��ABu, ABu, u, t �, ��ABu, ABu, u, t �,�� Qu, u, ABu, t �, ��ABu, Qu, u, t � ;. 

This implies  

ℳ�ABu, u, u, qt� ≥min :ℳ�ABu, ABu, u, t �, ℳ�ABu, ABu, u, t �,ℳ�u, u, ABu, t �, ℳ�ABu, u, u, t � ; 

��ABu, u, u, qt�  ≤ max :��ABu, ABu, u, t �, ��ABu, ABu, u, t �,��u, u, ABu, t �, ��ABu, u, u, t � ; . 

 

Therefore by lemma (2.6) we have ABu = u. Thus Pu = Qu = ABu = u.  

 

Put x = u, y = u, z = Qx2n-1, in (iv) we get 

 

ℳ�Pu, QQx�	�, QQx�	�, qt � ≥  min : ℳ�u, u, u, t �, ℳ� u, u, STu, t �,ℳ�u, STu, u, t �, ℳ� u, u, , STu, t �; 

��Pu, QQx�	�, QQx�	�, qt � ≤ max : ��u, u, u, t �, �� u, u, STu, t �,��u, STu, u, t �, �� u, u, , STu, t �;,  

 

On using lemma, (2.6) we have 

 

ℳ�STu, STu, u, qt � ≥ ℳ� STu, STu, u, t � and 

ℳ�STu, STu, u, qt � ≥ ℳ� STu, STu, u, t � 

�(STu, STu, u, qt ) ≤ �( STu, STu, u, t ). 

Thus STu = u.  We get Pu = Qu = ABu = STu = u.  
 

Uniqueness 
 

Let w be another common fixed point of A, B, P, Q, S and T. Then  

ℳ� Pu, Qw, Qw, qt � ≥ min :ℳ�ABu, Pw, Qw, t �, ℳ� ABu, Pw, STw, t �,ℳ� Qw, STw, Pw, t �, ℳ� ABu, Qw, STw, t �;  
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ℳ� u, w, w, qt �  ≥  min :ℳ� u, w, w, t �, ℳ� u, w, w, t �,ℳ� w, w, w, t �, ℳ� u, w, w, t �;  

ℳ� u, w, w, qt � ≥ ℳ� u, w, w, t � and  

�� Pu, Qw, Qw, qt � ≤ max :��ABu, Pw, Qw, t �, � � ABu, Pw, STw, t �,�� Qw, STw, Pw, t �, �� ABu, Qw, STw, t �;  

�� u, w, w, qt �  ≤  max :�� u, w, w, t �, �� u, w, w, t �,�� w, w, w, t �, �� u, w, w, t �; �� u, w, w, qt � ≤ �� u, w, w, t �,  

which is a contradiction.  Therefore u = w.  

Hence the common fixed point is unique.  
 

Corollary 4.2 
 

Let (X, ℳ, �, ∗,◊) be a complete generalized intuitionistic fuzzy metric space and let A, P,Q and 

S be self mappings  of X satisfying the following conditions.  
 

(i) P(X) ⊆ S(X), Q(X) ⊆ A(X)  

(ii) The pair (P,A) and (Q,S) are compatible mappings of type (P)  

(iii) S is continuous  

(iv) ℳ( Px, Qz, Qz, qt )  ≥  min { ℳ( Ax, Py, Qy, t ), ℳ( Ax, Py, Sz, t ), 

                                               ℳ( Qy, Sz, Py, t ),  ℳ( Ax, Qy, Sz, t )} and  �( Px, Qz, Qz, qt ) ≤  max {�( Ax, Py, Qy, t ), �( Ax, Py, Sz, t ),                                                     �( Qy, Sz, Py, t ), �( Ax, Qy, Sz, t )}. 

 
Then the mappings P, Q, A and S have a unique common fixed point in X.  

 

Corollary 4.3 
 

Let (X, ℳ, �, ∗,◊) be a complete generalized intuitionistic fuzzy metric space and let B,P,Q  and 

T be self  mappings of X satisfying the conditions (i), (ii), (iii), & (iv) with S = I and A = I;  

Then the mappings B, P,Q and T have a unique common fixed point.  

 

Corollary 4.4 

 

Let ( X, ℳ, �, ∗, ◊ ) be a complete generalized intuitionistic fuzzy metric space and let 

A,B,P,Q,S and T be self mappings of X satisfying the following conditions: 

 

(i) P(X) ⊆ ST(X), Q(X) ⊆ AB(X)  

(ii) The pair (P, AB) and (Q, ST) are compatible mappings of type (P)  

(iii) ST is continuous  

(iv) ℳ( Px, Qz, Qz, qt)  ≥  ℳ( ABx, Py, Qy, t) ∗ ℳ(ABx, Py, STz, t) ∗ 

                                          ℳ( Qy, STz, Py, t) ∗ ℳ(ABx,Qy,STz,t) and  

�( Px, Qz, Qz, qt)  ≤  �( ABx, Py, Qy, t) ◊ �( ABx, Py, STz, t) ◊  
                                         �( Qy, STz, Py, t)  ◊ �( ABx, Qy, STz, t) 

Then the mappings P,Q,AB and ST have a unique common fixed point in X.  
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